/Modules/_hashopenssl.c (49952947cba20f511e3727bb3a7b57d1e296878d) (28694 bytes) (mode 100644) (type blob)

/* Module that wraps all OpenSSL hash algorithms */

/*
 * Copyright (C) 2005-2010   Gregory P. Smith (greg@krypto.org)
 * Licensed to PSF under a Contributor Agreement.
 *
 * Derived from a skeleton of shamodule.c containing work performed by:
 *
 * Andrew Kuchling (amk@amk.ca)
 * Greg Stein (gstein@lyra.org)
 *
 */

#define PY_SSIZE_T_CLEAN

#include "Python.h"
#include "structmember.h"
#include "hashlib.h"
#include "pystrhex.h"


/* EVP is the preferred interface to hashing in OpenSSL */
#include <openssl/evp.h>
/* We use the object interface to discover what hashes OpenSSL supports. */
#include <openssl/objects.h>
#include "openssl/err.h"

#include "clinic/_hashopenssl.c.h"
/*[clinic input]
module _hashlib
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=c2b4ff081bac4be1]*/

#define MUNCH_SIZE INT_MAX

#ifndef HASH_OBJ_CONSTRUCTOR
#define HASH_OBJ_CONSTRUCTOR 0
#endif

#if (OPENSSL_VERSION_NUMBER < 0x10100000L) || defined(LIBRESSL_VERSION_NUMBER)
/* OpenSSL < 1.1.0 */
#define EVP_MD_CTX_new EVP_MD_CTX_create
#define EVP_MD_CTX_free EVP_MD_CTX_destroy
#define HAS_FAST_PKCS5_PBKDF2_HMAC 0
#include <openssl/hmac.h>
#else
/* OpenSSL >= 1.1.0 */
#define HAS_FAST_PKCS5_PBKDF2_HMAC 1
#endif


typedef struct {
    PyObject_HEAD
    PyObject            *name;  /* name of this hash algorithm */
    EVP_MD_CTX          *ctx;   /* OpenSSL message digest context */
#ifdef WITH_THREAD
    PyThread_type_lock   lock;  /* OpenSSL context lock */
#endif
} EVPobject;


static PyTypeObject EVPtype;


#define DEFINE_CONSTS_FOR_NEW(Name)  \
    static PyObject *CONST_ ## Name ## _name_obj = NULL; \
    static EVP_MD_CTX *CONST_new_ ## Name ## _ctx_p = NULL;

DEFINE_CONSTS_FOR_NEW(md5)
DEFINE_CONSTS_FOR_NEW(sha1)
DEFINE_CONSTS_FOR_NEW(sha224)
DEFINE_CONSTS_FOR_NEW(sha256)
DEFINE_CONSTS_FOR_NEW(sha384)
DEFINE_CONSTS_FOR_NEW(sha512)


/* LCOV_EXCL_START */
static PyObject *
_setException(PyObject *exc)
{
    unsigned long errcode;
    const char *lib, *func, *reason;

    errcode = ERR_peek_last_error();
    if (!errcode) {
        PyErr_SetString(exc, "unknown reasons");
        return NULL;
    }
    ERR_clear_error();

    lib = ERR_lib_error_string(errcode);
    func = ERR_func_error_string(errcode);
    reason = ERR_reason_error_string(errcode);

    if (lib && func) {
        PyErr_Format(exc, "[%s: %s] %s", lib, func, reason);
    }
    else if (lib) {
        PyErr_Format(exc, "[%s] %s", lib, reason);
    }
    else {
        PyErr_SetString(exc, reason);
    }
    return NULL;
}
/* LCOV_EXCL_STOP */

static EVPobject *
newEVPobject(PyObject *name)
{
    EVPobject *retval = (EVPobject *)PyObject_New(EVPobject, &EVPtype);
    if (retval == NULL) {
        return NULL;
    }

    retval->ctx = EVP_MD_CTX_new();
    if (retval->ctx == NULL) {
        PyErr_NoMemory();
        return NULL;
    }

    /* save the name for .name to return */
    Py_INCREF(name);
    retval->name = name;
#ifdef WITH_THREAD
    retval->lock = NULL;
#endif

    return retval;
}

static void
EVP_hash(EVPobject *self, const void *vp, Py_ssize_t len)
{
    unsigned int process;
    const unsigned char *cp = (const unsigned char *)vp;
    while (0 < len) {
        if (len > (Py_ssize_t)MUNCH_SIZE)
            process = MUNCH_SIZE;
        else
            process = Py_SAFE_DOWNCAST(len, Py_ssize_t, unsigned int);
        EVP_DigestUpdate(self->ctx, (const void*)cp, process);
        len -= process;
        cp += process;
    }
}

/* Internal methods for a hash object */

static void
EVP_dealloc(EVPobject *self)
{
#ifdef WITH_THREAD
    if (self->lock != NULL)
        PyThread_free_lock(self->lock);
#endif
    EVP_MD_CTX_free(self->ctx);
    Py_XDECREF(self->name);
    PyObject_Del(self);
}

static int
locked_EVP_MD_CTX_copy(EVP_MD_CTX *new_ctx_p, EVPobject *self)
{
    int result;
    ENTER_HASHLIB(self);
    result = EVP_MD_CTX_copy(new_ctx_p, self->ctx);
    LEAVE_HASHLIB(self);
    return result;
}

/* External methods for a hash object */

PyDoc_STRVAR(EVP_copy__doc__, "Return a copy of the hash object.");


static PyObject *
EVP_copy(EVPobject *self, PyObject *unused)
{
    EVPobject *newobj;

    if ( (newobj = newEVPobject(self->name))==NULL)
        return NULL;

    if (!locked_EVP_MD_CTX_copy(newobj->ctx, self)) {
        return _setException(PyExc_ValueError);
    }
    return (PyObject *)newobj;
}

PyDoc_STRVAR(EVP_digest__doc__,
"Return the digest value as a string of binary data.");

static PyObject *
EVP_digest(EVPobject *self, PyObject *unused)
{
    unsigned char digest[EVP_MAX_MD_SIZE];
    EVP_MD_CTX *temp_ctx;
    PyObject *retval;
    unsigned int digest_size;

    temp_ctx = EVP_MD_CTX_new();
    if (temp_ctx == NULL) {
        PyErr_NoMemory();
        return NULL;
    }

    if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) {
        return _setException(PyExc_ValueError);
    }
    digest_size = EVP_MD_CTX_size(temp_ctx);
    EVP_DigestFinal(temp_ctx, digest, NULL);

    retval = PyBytes_FromStringAndSize((const char *)digest, digest_size);
    EVP_MD_CTX_free(temp_ctx);
    return retval;
}

PyDoc_STRVAR(EVP_hexdigest__doc__,
"Return the digest value as a string of hexadecimal digits.");

static PyObject *
EVP_hexdigest(EVPobject *self, PyObject *unused)
{
    unsigned char digest[EVP_MAX_MD_SIZE];
    EVP_MD_CTX *temp_ctx;
    unsigned int digest_size;

    temp_ctx = EVP_MD_CTX_new();
    if (temp_ctx == NULL) {
        PyErr_NoMemory();
        return NULL;
    }

    /* Get the raw (binary) digest value */
    if (!locked_EVP_MD_CTX_copy(temp_ctx, self)) {
        return _setException(PyExc_ValueError);
    }
    digest_size = EVP_MD_CTX_size(temp_ctx);
    EVP_DigestFinal(temp_ctx, digest, NULL);

    EVP_MD_CTX_free(temp_ctx);

    return _Py_strhex((const char *)digest, digest_size);
}

PyDoc_STRVAR(EVP_update__doc__,
"Update this hash object's state with the provided string.");

static PyObject *
EVP_update(EVPobject *self, PyObject *args)
{
    PyObject *obj;
    Py_buffer view;

    if (!PyArg_ParseTuple(args, "O:update", &obj))
        return NULL;

    GET_BUFFER_VIEW_OR_ERROUT(obj, &view);

#ifdef WITH_THREAD
    if (self->lock == NULL && view.len >= HASHLIB_GIL_MINSIZE) {
        self->lock = PyThread_allocate_lock();
        /* fail? lock = NULL and we fail over to non-threaded code. */
    }

    if (self->lock != NULL) {
        Py_BEGIN_ALLOW_THREADS
        PyThread_acquire_lock(self->lock, 1);
        EVP_hash(self, view.buf, view.len);
        PyThread_release_lock(self->lock);
        Py_END_ALLOW_THREADS
    } else {
        EVP_hash(self, view.buf, view.len);
    }
#else
    EVP_hash(self, view.buf, view.len);
#endif

    PyBuffer_Release(&view);
    Py_RETURN_NONE;
}

static PyMethodDef EVP_methods[] = {
    {"update",    (PyCFunction)EVP_update,    METH_VARARGS, EVP_update__doc__},
    {"digest",    (PyCFunction)EVP_digest,    METH_NOARGS,  EVP_digest__doc__},
    {"hexdigest", (PyCFunction)EVP_hexdigest, METH_NOARGS,  EVP_hexdigest__doc__},
    {"copy",      (PyCFunction)EVP_copy,      METH_NOARGS,  EVP_copy__doc__},
    {NULL, NULL}  /* sentinel */
};

static PyObject *
EVP_get_block_size(EVPobject *self, void *closure)
{
    long block_size;
    block_size = EVP_MD_CTX_block_size(self->ctx);
    return PyLong_FromLong(block_size);
}

static PyObject *
EVP_get_digest_size(EVPobject *self, void *closure)
{
    long size;
    size = EVP_MD_CTX_size(self->ctx);
    return PyLong_FromLong(size);
}

static PyMemberDef EVP_members[] = {
    {"name", T_OBJECT, offsetof(EVPobject, name), READONLY, PyDoc_STR("algorithm name.")},
    {NULL}  /* Sentinel */
};

static PyGetSetDef EVP_getseters[] = {
    {"digest_size",
     (getter)EVP_get_digest_size, NULL,
     NULL,
     NULL},
    {"block_size",
     (getter)EVP_get_block_size, NULL,
     NULL,
     NULL},
    {NULL}  /* Sentinel */
};


static PyObject *
EVP_repr(EVPobject *self)
{
    return PyUnicode_FromFormat("<%U HASH object @ %p>", self->name, self);
}

#if HASH_OBJ_CONSTRUCTOR
static int
EVP_tp_init(EVPobject *self, PyObject *args, PyObject *kwds)
{
    static char *kwlist[] = {"name", "string", NULL};
    PyObject *name_obj = NULL;
    PyObject *data_obj = NULL;
    Py_buffer view;
    char *nameStr;
    const EVP_MD *digest;

    if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:HASH", kwlist,
                                     &name_obj, &data_obj)) {
        return -1;
    }

    if (data_obj)
        GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view);

    if (!PyArg_Parse(name_obj, "s", &nameStr)) {
        PyErr_SetString(PyExc_TypeError, "name must be a string");
        if (data_obj)
            PyBuffer_Release(&view);
        return -1;
    }

    digest = EVP_get_digestbyname(nameStr);
    if (!digest) {
        PyErr_SetString(PyExc_ValueError, "unknown hash function");
        if (data_obj)
            PyBuffer_Release(&view);
        return -1;
    }
    EVP_DigestInit(self->ctx, digest);

    self->name = name_obj;
    Py_INCREF(self->name);

    if (data_obj) {
        if (view.len >= HASHLIB_GIL_MINSIZE) {
            Py_BEGIN_ALLOW_THREADS
            EVP_hash(self, view.buf, view.len);
            Py_END_ALLOW_THREADS
        } else {
            EVP_hash(self, view.buf, view.len);
        }
        PyBuffer_Release(&view);
    }

    return 0;
}
#endif


PyDoc_STRVAR(hashtype_doc,
"A hash represents the object used to calculate a checksum of a\n\
string of information.\n\
\n\
Methods:\n\
\n\
update() -- updates the current digest with an additional string\n\
digest() -- return the current digest value\n\
hexdigest() -- return the current digest as a string of hexadecimal digits\n\
copy() -- return a copy of the current hash object\n\
\n\
Attributes:\n\
\n\
name -- the hash algorithm being used by this object\n\
digest_size -- number of bytes in this hashes output\n");

static PyTypeObject EVPtype = {
    PyVarObject_HEAD_INIT(NULL, 0)
    "_hashlib.HASH",    /*tp_name*/
    sizeof(EVPobject),  /*tp_basicsize*/
    0,                  /*tp_itemsize*/
    /* methods */
    (destructor)EVP_dealloc, /*tp_dealloc*/
    0,                  /*tp_print*/
    0,                  /*tp_getattr*/
    0,                  /*tp_setattr*/
    0,                  /*tp_reserved*/
    (reprfunc)EVP_repr, /*tp_repr*/
    0,                  /*tp_as_number*/
    0,                  /*tp_as_sequence*/
    0,                  /*tp_as_mapping*/
    0,                  /*tp_hash*/
    0,                  /*tp_call*/
    0,                  /*tp_str*/
    0,                  /*tp_getattro*/
    0,                  /*tp_setattro*/
    0,                  /*tp_as_buffer*/
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
    hashtype_doc,       /*tp_doc*/
    0,                  /*tp_traverse*/
    0,                  /*tp_clear*/
    0,                  /*tp_richcompare*/
    0,                  /*tp_weaklistoffset*/
    0,                  /*tp_iter*/
    0,                  /*tp_iternext*/
    EVP_methods,        /* tp_methods */
    EVP_members,        /* tp_members */
    EVP_getseters,      /* tp_getset */
#if 1
    0,                  /* tp_base */
    0,                  /* tp_dict */
    0,                  /* tp_descr_get */
    0,                  /* tp_descr_set */
    0,                  /* tp_dictoffset */
#endif
#if HASH_OBJ_CONSTRUCTOR
    (initproc)EVP_tp_init, /* tp_init */
#endif
};

static PyObject *
EVPnew(PyObject *name_obj,
       const EVP_MD *digest, const EVP_MD_CTX *initial_ctx,
       const unsigned char *cp, Py_ssize_t len)
{
    EVPobject *self;

    if (!digest && !initial_ctx) {
        PyErr_SetString(PyExc_ValueError, "unsupported hash type");
        return NULL;
    }

    if ((self = newEVPobject(name_obj)) == NULL)
        return NULL;

    if (initial_ctx) {
        EVP_MD_CTX_copy(self->ctx, initial_ctx);
    } else {
        EVP_DigestInit(self->ctx, digest);
    }

    if (cp && len) {
        if (len >= HASHLIB_GIL_MINSIZE) {
            Py_BEGIN_ALLOW_THREADS
            EVP_hash(self, cp, len);
            Py_END_ALLOW_THREADS
        } else {
            EVP_hash(self, cp, len);
        }
    }

    return (PyObject *)self;
}


/* The module-level function: new() */

PyDoc_STRVAR(EVP_new__doc__,
"Return a new hash object using the named algorithm.\n\
An optional string argument may be provided and will be\n\
automatically hashed.\n\
\n\
The MD5 and SHA1 algorithms are always supported.\n");

static PyObject *
EVP_new(PyObject *self, PyObject *args, PyObject *kwdict)
{
    static char *kwlist[] = {"name", "string", NULL};
    PyObject *name_obj = NULL;
    PyObject *data_obj = NULL;
    Py_buffer view = { 0 };
    PyObject *ret_obj;
    char *name;
    const EVP_MD *digest;

    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "O|O:new", kwlist,
                                     &name_obj, &data_obj)) {
        return NULL;
    }

    if (!PyArg_Parse(name_obj, "s", &name)) {
        PyErr_SetString(PyExc_TypeError, "name must be a string");
        return NULL;
    }

    if (data_obj)
        GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view);

    digest = EVP_get_digestbyname(name);

    ret_obj = EVPnew(name_obj, digest, NULL, (unsigned char*)view.buf, view.len);

    if (data_obj)
        PyBuffer_Release(&view);
    return ret_obj;
}



#if (OPENSSL_VERSION_NUMBER >= 0x10000000 && !defined(OPENSSL_NO_HMAC) \
     && !defined(OPENSSL_NO_SHA))

#define PY_PBKDF2_HMAC 1

#if !HAS_FAST_PKCS5_PBKDF2_HMAC
/* Improved implementation of PKCS5_PBKDF2_HMAC()
 *
 * PKCS5_PBKDF2_HMAC_fast() hashes the password exactly one time instead of
 * `iter` times. Today (2013) the iteration count is typically 100,000 or
 * more. The improved algorithm is not subject to a Denial-of-Service
 * vulnerability with overly large passwords.
 *
 * Also OpenSSL < 1.0 don't provide PKCS5_PBKDF2_HMAC(), only
 * PKCS5_PBKDF2_SHA1.
 */
static int
PKCS5_PBKDF2_HMAC_fast(const char *pass, int passlen,
                       const unsigned char *salt, int saltlen,
                       int iter, const EVP_MD *digest,
                       int keylen, unsigned char *out)
{
    unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4];
    int cplen, j, k, tkeylen, mdlen;
    unsigned long i = 1;
    HMAC_CTX hctx_tpl, hctx;

    mdlen = EVP_MD_size(digest);
    if (mdlen < 0)
        return 0;

    HMAC_CTX_init(&hctx_tpl);
    HMAC_CTX_init(&hctx);
    p = out;
    tkeylen = keylen;
    if (!HMAC_Init_ex(&hctx_tpl, pass, passlen, digest, NULL)) {
        HMAC_CTX_cleanup(&hctx_tpl);
        return 0;
    }
    while (tkeylen) {
        if (tkeylen > mdlen)
            cplen = mdlen;
        else
            cplen = tkeylen;
        /* We are unlikely to ever use more than 256 blocks (5120 bits!)
         * but just in case...
         */
        itmp[0] = (unsigned char)((i >> 24) & 0xff);
        itmp[1] = (unsigned char)((i >> 16) & 0xff);
        itmp[2] = (unsigned char)((i >> 8) & 0xff);
        itmp[3] = (unsigned char)(i & 0xff);
        if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) {
            HMAC_CTX_cleanup(&hctx_tpl);
            return 0;
        }
        if (!HMAC_Update(&hctx, salt, saltlen)
                || !HMAC_Update(&hctx, itmp, 4)
                || !HMAC_Final(&hctx, digtmp, NULL)) {
            HMAC_CTX_cleanup(&hctx_tpl);
            HMAC_CTX_cleanup(&hctx);
            return 0;
        }
        HMAC_CTX_cleanup(&hctx);
        memcpy(p, digtmp, cplen);
        for (j = 1; j < iter; j++) {
            if (!HMAC_CTX_copy(&hctx, &hctx_tpl)) {
                HMAC_CTX_cleanup(&hctx_tpl);
                return 0;
            }
            if (!HMAC_Update(&hctx, digtmp, mdlen)
                    || !HMAC_Final(&hctx, digtmp, NULL)) {
                HMAC_CTX_cleanup(&hctx_tpl);
                HMAC_CTX_cleanup(&hctx);
                return 0;
            }
            HMAC_CTX_cleanup(&hctx);
            for (k = 0; k < cplen; k++) {
                p[k] ^= digtmp[k];
            }
        }
        tkeylen-= cplen;
        i++;
        p+= cplen;
    }
    HMAC_CTX_cleanup(&hctx_tpl);
    return 1;
}
#endif


PyDoc_STRVAR(pbkdf2_hmac__doc__,
"pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None) -> key\n\
\n\
Password based key derivation function 2 (PKCS #5 v2.0) with HMAC as\n\
pseudorandom function.");

static PyObject *
pbkdf2_hmac(PyObject *self, PyObject *args, PyObject *kwdict)
{
    static char *kwlist[] = {"hash_name", "password", "salt", "iterations",
                             "dklen", NULL};
    PyObject *key_obj = NULL, *dklen_obj = Py_None;
    char *name, *key;
    Py_buffer password, salt;
    long iterations, dklen;
    int retval;
    const EVP_MD *digest;

    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "sy*y*l|O:pbkdf2_hmac",
                                     kwlist, &name, &password, &salt,
                                     &iterations, &dklen_obj)) {
        return NULL;
    }

    digest = EVP_get_digestbyname(name);
    if (digest == NULL) {
        PyErr_SetString(PyExc_ValueError, "unsupported hash type");
        goto end;
    }

    if (password.len > INT_MAX) {
        PyErr_SetString(PyExc_OverflowError,
                        "password is too long.");
        goto end;
    }

    if (salt.len > INT_MAX) {
        PyErr_SetString(PyExc_OverflowError,
                        "salt is too long.");
        goto end;
    }

    if (iterations < 1) {
        PyErr_SetString(PyExc_ValueError,
                        "iteration value must be greater than 0.");
        goto end;
    }
    if (iterations > INT_MAX) {
        PyErr_SetString(PyExc_OverflowError,
                        "iteration value is too great.");
        goto end;
    }

    if (dklen_obj == Py_None) {
        dklen = EVP_MD_size(digest);
    } else {
        dklen = PyLong_AsLong(dklen_obj);
        if ((dklen == -1) && PyErr_Occurred()) {
            goto end;
        }
    }
    if (dklen < 1) {
        PyErr_SetString(PyExc_ValueError,
                        "key length must be greater than 0.");
        goto end;
    }
    if (dklen > INT_MAX) {
        /* INT_MAX is always smaller than dkLen max (2^32 - 1) * hLen */
        PyErr_SetString(PyExc_OverflowError,
                        "key length is too great.");
        goto end;
    }

    key_obj = PyBytes_FromStringAndSize(NULL, dklen);
    if (key_obj == NULL) {
        goto end;
    }
    key = PyBytes_AS_STRING(key_obj);

    Py_BEGIN_ALLOW_THREADS
#if HAS_FAST_PKCS5_PBKDF2_HMAC
    retval = PKCS5_PBKDF2_HMAC((char*)password.buf, (int)password.len,
                               (unsigned char *)salt.buf, (int)salt.len,
                               iterations, digest, dklen,
                               (unsigned char *)key);
#else
    retval = PKCS5_PBKDF2_HMAC_fast((char*)password.buf, (int)password.len,
                                    (unsigned char *)salt.buf, (int)salt.len,
                                    iterations, digest, dklen,
                                    (unsigned char *)key);
#endif
    Py_END_ALLOW_THREADS

    if (!retval) {
        Py_CLEAR(key_obj);
        _setException(PyExc_ValueError);
        goto end;
    }

  end:
    PyBuffer_Release(&password);
    PyBuffer_Release(&salt);
    return key_obj;
}

#endif

#if OPENSSL_VERSION_NUMBER > 0x10100000L && !defined(OPENSSL_NO_SCRYPT) && !defined(LIBRESSL_VERSION_NUMBER)
#define PY_SCRYPT 1

/*[clinic input]
_hashlib.scrypt

    password: Py_buffer
    *
    salt: Py_buffer = None
    n as n_obj: object(subclass_of='&PyLong_Type') = None
    r as r_obj: object(subclass_of='&PyLong_Type') = None
    p as p_obj: object(subclass_of='&PyLong_Type') = None
    maxmem: long = 0
    dklen: long = 64


scrypt password-based key derivation function.
[clinic start generated code]*/

static PyObject *
_hashlib_scrypt_impl(PyObject *module, Py_buffer *password, Py_buffer *salt,
                     PyObject *n_obj, PyObject *r_obj, PyObject *p_obj,
                     long maxmem, long dklen)
/*[clinic end generated code: output=14849e2aa2b7b46c input=48a7d63bf3f75c42]*/
{
    PyObject *key_obj = NULL;
    char *key;
    int retval;
    unsigned long n, r, p;

    if (password->len > INT_MAX) {
        PyErr_SetString(PyExc_OverflowError,
                        "password is too long.");
        return NULL;
    }

    if (salt->buf == NULL) {
        PyErr_SetString(PyExc_TypeError,
                        "salt is required");
        return NULL;
    }
    if (salt->len > INT_MAX) {
        PyErr_SetString(PyExc_OverflowError,
                        "salt is too long.");
        return NULL;
    }

    n = PyLong_AsUnsignedLong(n_obj);
    if (n == (unsigned long) -1 && PyErr_Occurred()) {
        PyErr_SetString(PyExc_TypeError,
                        "n is required and must be an unsigned int");
        return NULL;
    }
    if (n < 2 || n & (n - 1)) {
        PyErr_SetString(PyExc_ValueError,
                        "n must be a power of 2.");
        return NULL;
    }

    r = PyLong_AsUnsignedLong(r_obj);
    if (r == (unsigned long) -1 && PyErr_Occurred()) {
        PyErr_SetString(PyExc_TypeError,
                         "r is required and must be an unsigned int");
        return NULL;
    }

    p = PyLong_AsUnsignedLong(p_obj);
    if (p == (unsigned long) -1 && PyErr_Occurred()) {
        PyErr_SetString(PyExc_TypeError,
                         "p is required and must be an unsigned int");
        return NULL;
    }

    if (maxmem < 0 || maxmem > INT_MAX) {
        /* OpenSSL 1.1.0 restricts maxmem to 32MB. It may change in the
           future. The maxmem constant is private to OpenSSL. */
        PyErr_Format(PyExc_ValueError,
                     "maxmem must be positive and smaller than %d",
                      INT_MAX);
        return NULL;
    }

    if (dklen < 1 || dklen > INT_MAX) {
        PyErr_Format(PyExc_ValueError,
                    "dklen must be greater than 0 and smaller than %d",
                    INT_MAX);
        return NULL;
    }

    /* let OpenSSL validate the rest */
    retval = EVP_PBE_scrypt(NULL, 0, NULL, 0, n, r, p, maxmem, NULL, 0);
    if (!retval) {
        /* sorry, can't do much better */
        PyErr_SetString(PyExc_ValueError,
                        "Invalid paramemter combination for n, r, p, maxmem.");
        return NULL;
   }

    key_obj = PyBytes_FromStringAndSize(NULL, dklen);
    if (key_obj == NULL) {
        return NULL;
    }
    key = PyBytes_AS_STRING(key_obj);

    Py_BEGIN_ALLOW_THREADS
    retval = EVP_PBE_scrypt(
        (const char*)password->buf, (size_t)password->len,
        (const unsigned char *)salt->buf, (size_t)salt->len,
        n, r, p, maxmem,
        (unsigned char *)key, (size_t)dklen
    );
    Py_END_ALLOW_THREADS

    if (!retval) {
        Py_CLEAR(key_obj);
        _setException(PyExc_ValueError);
        return NULL;
    }
    return key_obj;
}
#endif

/* State for our callback function so that it can accumulate a result. */
typedef struct _internal_name_mapper_state {
    PyObject *set;
    int error;
} _InternalNameMapperState;


/* A callback function to pass to OpenSSL's OBJ_NAME_do_all(...) */
static void
_openssl_hash_name_mapper(const OBJ_NAME *openssl_obj_name, void *arg)
{
    _InternalNameMapperState *state = (_InternalNameMapperState *)arg;
    PyObject *py_name;

    assert(state != NULL);
    if (openssl_obj_name == NULL)
        return;
    /* Ignore aliased names, they pollute the list and OpenSSL appears to
     * have its own definition of alias as the resulting list still
     * contains duplicate and alternate names for several algorithms.     */
    if (openssl_obj_name->alias)
        return;

    py_name = PyUnicode_FromString(openssl_obj_name->name);
    if (py_name == NULL) {
        state->error = 1;
    } else {
        if (PySet_Add(state->set, py_name) != 0) {
            state->error = 1;
        }
        Py_DECREF(py_name);
    }
}


/* Ask OpenSSL for a list of supported ciphers, filling in a Python set. */
static PyObject*
generate_hash_name_list(void)
{
    _InternalNameMapperState state;
    state.set = PyFrozenSet_New(NULL);
    if (state.set == NULL)
        return NULL;
    state.error = 0;

    OBJ_NAME_do_all(OBJ_NAME_TYPE_MD_METH, &_openssl_hash_name_mapper, &state);

    if (state.error) {
        Py_DECREF(state.set);
        return NULL;
    }
    return state.set;
}


/*
 *  This macro generates constructor function definitions for specific
 *  hash algorithms.  These constructors are much faster than calling
 *  the generic one passing it a python string and are noticeably
 *  faster than calling a python new() wrapper.  Thats important for
 *  code that wants to make hashes of a bunch of small strings.
 */
#define GEN_CONSTRUCTOR(NAME)  \
    static PyObject * \
    EVP_new_ ## NAME (PyObject *self, PyObject **args, Py_ssize_t nargs, PyObject *kwnames) \
    { \
        PyObject *data_obj = NULL; \
        Py_buffer view = { 0 }; \
        PyObject *ret_obj; \
     \
        if (!_PyArg_ParseStack(args, nargs, "|O:" #NAME , &data_obj)) { \
            return NULL; \
        } \
     \
        if (!_PyArg_NoStackKeywords(#NAME, kwnames)) { \
            return NULL; \
        } \
     \
        if (data_obj) \
            GET_BUFFER_VIEW_OR_ERROUT(data_obj, &view); \
     \
        ret_obj = EVPnew( \
                    CONST_ ## NAME ## _name_obj, \
                    NULL, \
                    CONST_new_ ## NAME ## _ctx_p, \
                    (unsigned char*)view.buf, \
                    view.len); \
     \
        if (data_obj) \
            PyBuffer_Release(&view); \
        return ret_obj; \
    }

/* a PyMethodDef structure for the constructor */
#define CONSTRUCTOR_METH_DEF(NAME)  \
    {"openssl_" #NAME, (PyCFunction)EVP_new_ ## NAME, METH_FASTCALL, \
        PyDoc_STR("Returns a " #NAME \
                  " hash object; optionally initialized with a string") \
    }

/* used in the init function to setup a constructor: initialize OpenSSL
   constructor constants if they haven't been initialized already.  */
#define INIT_CONSTRUCTOR_CONSTANTS(NAME)  do { \
    if (CONST_ ## NAME ## _name_obj == NULL) { \
        CONST_ ## NAME ## _name_obj = PyUnicode_FromString(#NAME); \
        if (EVP_get_digestbyname(#NAME)) { \
            CONST_new_ ## NAME ## _ctx_p = EVP_MD_CTX_new(); \
            EVP_DigestInit(CONST_new_ ## NAME ## _ctx_p, EVP_get_digestbyname(#NAME)); \
        } \
    } \
} while (0);

GEN_CONSTRUCTOR(md5)
GEN_CONSTRUCTOR(sha1)
GEN_CONSTRUCTOR(sha224)
GEN_CONSTRUCTOR(sha256)
GEN_CONSTRUCTOR(sha384)
GEN_CONSTRUCTOR(sha512)

/* List of functions exported by this module */

static struct PyMethodDef EVP_functions[] = {
    {"new", (PyCFunction)EVP_new, METH_VARARGS|METH_KEYWORDS, EVP_new__doc__},
#ifdef PY_PBKDF2_HMAC
    {"pbkdf2_hmac", (PyCFunction)pbkdf2_hmac, METH_VARARGS|METH_KEYWORDS,
     pbkdf2_hmac__doc__},
#endif
    _HASHLIB_SCRYPT_METHODDEF
    CONSTRUCTOR_METH_DEF(md5),
    CONSTRUCTOR_METH_DEF(sha1),
    CONSTRUCTOR_METH_DEF(sha224),
    CONSTRUCTOR_METH_DEF(sha256),
    CONSTRUCTOR_METH_DEF(sha384),
    CONSTRUCTOR_METH_DEF(sha512),
    {NULL,      NULL}            /* Sentinel */
};


/* Initialize this module. */


static struct PyModuleDef _hashlibmodule = {
    PyModuleDef_HEAD_INIT,
    "_hashlib",
    NULL,
    -1,
    EVP_functions,
    NULL,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC
PyInit__hashlib(void)
{
    PyObject *m, *openssl_md_meth_names;

    OpenSSL_add_all_digests();
    ERR_load_crypto_strings();

    /* TODO build EVP_functions openssl_* entries dynamically based
     * on what hashes are supported rather than listing many
     * but having some be unsupported.  Only init appropriate
     * constants. */

    Py_TYPE(&EVPtype) = &PyType_Type;
    if (PyType_Ready(&EVPtype) < 0)
        return NULL;

    m = PyModule_Create(&_hashlibmodule);
    if (m == NULL)
        return NULL;

    openssl_md_meth_names = generate_hash_name_list();
    if (openssl_md_meth_names == NULL) {
        Py_DECREF(m);
        return NULL;
    }
    if (PyModule_AddObject(m, "openssl_md_meth_names", openssl_md_meth_names)) {
        Py_DECREF(m);
        return NULL;
    }

    Py_INCREF((PyObject *)&EVPtype);
    PyModule_AddObject(m, "HASH", (PyObject *)&EVPtype);

    /* these constants are used by the convenience constructors */
    INIT_CONSTRUCTOR_CONSTANTS(md5);
    INIT_CONSTRUCTOR_CONSTANTS(sha1);
    INIT_CONSTRUCTOR_CONSTANTS(sha224);
    INIT_CONSTRUCTOR_CONSTANTS(sha256);
    INIT_CONSTRUCTOR_CONSTANTS(sha384);
    INIT_CONSTRUCTOR_CONSTANTS(sha512);
    return m;
}


Mode Type Size Ref File
100644 blob 582 58471109208922c9ee8c4b06135725f03ed16814 .bzrignore
100644 blob 545 fcf9df6a7a698e4bd87ed0c1cc4ed70bad8b9887 .codecov.yml
100644 blob 255 82694d81f276b2c59a0a93a4f678e1852e625052 .gitattributes
040000 tree - 7e849e161267e730810fbbe6a848b14d5d002788 .github
100644 blob 1397 8b54c2c4861389f6e8bbfbab5ae0c8b6bbbad041 .gitignore
100644 blob 1060 eb19a6c88d28d05588db25d21525ee2e19c22666 .hgeol
100644 blob 1358 68c607f2e8d420c8dfd0748efcd3b3b5447def16 .hgignore
100644 blob 8917 8f51c2ced49aed46d8b480280b630ea4264c57c3 .hgtags
100644 blob 1328 b9be0f11fdb829f16e9de1921257eb7ee45fac57 .hgtouch
100644 blob 248 0614a299b6221dc7faedaa9139ae8b034e618a85 .mention-bot
100644 blob 3512 e7e8694530ca21a6d7a19da3fab687a3e9d79e9c .travis.yml
040000 tree - ef39fb38058ea1cb07d5a66c7d0c338d5c9c634d Doc
040000 tree - 5dd6fc9dc09374506491247872c868eca111e256 Grammar
040000 tree - df0de9d4359f11311c74fd0dbad471bb2613a2d4 Include
100644 blob 12773 f5d0b39a0cdddb91a31a537052b7d8d31a4aa79f LICENSE
040000 tree - 41936e36e534f9069cb438b31908d8e097c673ee Lib
040000 tree - 1db7415d4375525eaf8d05ddd5b088de3321041c Mac
100644 blob 58983 4145634c032d543d02295bd2c28a0c6ce839fa86 Makefile.pre.in
040000 tree - 5ce39d28202a5713d0cff1c4cd7eb73267ea1a08 Misc
040000 tree - b74dfdc5f8f5700baaab0dbd2aa197899f8b79d9 Modules
040000 tree - 774ee56f73f58d31a7e7d59314020c9176eeb9d8 Objects
040000 tree - ed4f35810e9633502c16ae038c2ce697d3987201 PC
040000 tree - 37a613ac0022a9cfefaf3f13913fec7debe59259 PCbuild
040000 tree - 75771c7c20fe7a121d596299c5440aef10c6f884 Parser
040000 tree - 3efbcc80237ab7c3d4eb5bf31c893ca6de88e747 Programs
040000 tree - ec8f975802930f631229dd3f1c1dd6e327557ae8 Python
100644 blob 9325 9c95815d9e9d91b8dae8e05d8bbc696fe19f796b README.rst
040000 tree - 6f90a7ecc8b4a12e0377f892c8639ef99da08920 Tools
100644 blob 10910 9a9cc557281571f0d46c506c0e9d1b9fb25e063c aclocal.m4
100755 blob 42856 1f5c50c0d1529d50b94dc3533ca72a47f0fa5849 config.guess
100755 blob 35740 d654d03cdcd2226a5d7584890717e674a8122f4f config.sub
100755 blob 485283 87504d206837baf5a5781b6e1cc44dcce7138af9 configure
100644 blob 160661 f9bd92ce3da29ea7674a32bd5fe511b1fc4c4d0a configure.ac
100755 blob 7122 0ec27bcd488da5cad6ead13d70accbdbc40d31ef install-sh
100644 blob 41449 21354a5cb84fe5530dd0d460561ba95569abe1d4 pyconfig.h.in
100644 blob 98743 3b3d097454211c790c1602d759918bb65a622c97 setup.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/benf_wspdigital/cpython

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/benf_wspdigital/cpython

Clone this repository using git:
git clone git://git.rocketgit.com/user/benf_wspdigital/cpython

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main