File data_analysis/@meta_ev/get_meta_data.m added (mode: 100644) (index 0000000..93c3870) |
|
1 |
|
function obj = get_meta_data(obj, meta_data_file) |
|
2 |
|
% metadata-file should be tab-separated |
|
3 |
|
% header should look as follows: ev_file name_of_param1 name_of_param2 name_of_param3 .... |
|
4 |
|
headerlines = 1; |
|
5 |
|
meta_data = importdata(meta_data_file, '\t', 1); |
|
6 |
|
header = {meta_data.textdata{1:headerlines,:}}; |
|
7 |
|
assertEqual(header{1}, 'ev_files'); |
|
8 |
|
obj.param_names = {header{2:end}}; |
|
9 |
|
|
|
10 |
|
% read header again to skip it |
|
11 |
|
fid = fopen(meta_data_file); |
|
12 |
|
textscan(fid, '%s', 1, 'Delimiter','\n'); |
|
13 |
|
|
|
14 |
|
% read actual meta_data |
|
15 |
|
format_string = repmat('%s ',[1,3]); |
|
16 |
|
meta_data = textscan(fid, format_string,'Delimiter','\t'); |
|
17 |
|
ev_files = meta_data{1}; |
|
18 |
|
for k=1:length(obj.param_names) |
|
19 |
|
params{k} = cellfun(@str2num, meta_data{k+1}); |
|
20 |
|
end |
|
21 |
|
|
|
22 |
|
% sort by first param, second param etc |
|
23 |
|
[params, sort_order] = sortrows([params{:}]); |
|
24 |
|
ev_files = {ev_files{sort_order}}; |
|
25 |
|
evaluations_no = numel(ev_files); |
|
26 |
|
|
|
27 |
|
if length(obj.param_names) == 1 |
|
28 |
|
obj.params = {params}; |
|
29 |
|
obj.ev_files = ev_files; |
|
30 |
|
elseif length(obj.param_names) == 2 |
|
31 |
|
% attempt to reshape by first column |
|
32 |
|
param1_value_no = numel(unique(params(:,1))); |
|
33 |
|
assert(mod(evaluations_no, param1_value_no)==0,... |
|
34 |
|
'number of evaluations per value of parameter 1 seems to be non-uniform.'); |
|
35 |
|
dimensions = [evaluations_no/param1_value_no, param1_value_no]; |
|
36 |
|
obj.params{1} = reshape(params(:,1), dimensions); |
|
37 |
|
obj.params{2} = reshape(params(:,2), dimensions); |
|
38 |
|
obj.ev_files = reshape(ev_files, dimensions); |
|
39 |
|
end |
File data_analysis/@meta_ev/meta_ev.m changed (mode: 100644) (index 9e870d5..4e0929d) |
... |
... |
classdef meta_ev < class_conveniences |
14 |
14 |
properties(Dependent) |
properties(Dependent) |
15 |
15 |
dimensions@double vector % dimensions of evaluations-vector or -matrix |
dimensions@double vector % dimensions of evaluations-vector or -matrix |
16 |
16 |
evaluations_no@double % number of evaluations |
evaluations_no@double % number of evaluations |
|
17 |
|
opt_logneg_corrected@cell % cell array (index corresponding to tracepair) of optimal entanglement |
|
18 |
|
opt_pulse_gammas@cell % cell array (index corresponding to tracepair) of optimal pulse gammas |
|
19 |
|
tracepairs_no@double % number of tracepairs used for each evaluation (enforced to be the same) |
17 |
20 |
end |
end |
18 |
21 |
|
|
19 |
22 |
methods |
methods |
|
... |
... |
classdef meta_ev < class_conveniences |
25 |
28 |
end |
end |
26 |
29 |
obj.evaluations = evaluations; |
obj.evaluations = evaluations; |
27 |
30 |
end |
end |
28 |
|
function obj = get_meta_data(obj, meta_data_file) |
|
29 |
|
% metadata-file should be tab-separated |
|
30 |
|
% header should look as follows: ev_file name_of_param1 name_of_param2 name_of_param3 .... |
|
31 |
|
headerlines = 1; |
|
32 |
|
meta_data = importdata(meta_data_file, '\t', 1); |
|
33 |
|
header = {meta_data.textdata{1:headerlines,:}}; |
|
34 |
|
assertEqual(header{1}, 'ev_files'); |
|
35 |
|
obj.param_names = {header{2:end}}; |
|
36 |
31 |
|
|
37 |
|
% read header again to skip it |
|
38 |
|
fid = fopen(meta_data_file); |
|
39 |
|
textscan(fid, '%s', 1, 'Delimiter','\n'); |
|
40 |
|
|
|
41 |
|
% read actual meta_data |
|
42 |
|
format_string = repmat('%s ',[1,3]); |
|
43 |
|
meta_data = textscan(fid, format_string,'Delimiter','\t'); |
|
44 |
|
ev_files = meta_data{1}; |
|
45 |
|
for k=1:length(obj.param_names) |
|
46 |
|
params{k} = cellfun(@str2num, meta_data{k+1}); |
|
|
32 |
|
function cellarray = for_each_evaluation(obj, fieldname, varargin) |
|
33 |
|
if length(varargin) > 0 |
|
34 |
|
assert(length(varargin)==1); |
|
35 |
|
index = varargin{1}; |
|
36 |
|
get_element = @(array)array(index); |
|
37 |
|
else |
|
38 |
|
get_element = @(x) x; |
47 |
39 |
end |
end |
|
40 |
|
get_field = @(ev)get_element(getfield(ev, fieldname)); |
48 |
41 |
|
|
49 |
|
% sort by first param, second param etc |
|
50 |
|
[params, sort_order] = sortrows([params{:}]); |
|
51 |
|
ev_files = {ev_files{sort_order}}; |
|
52 |
|
evaluations_no = numel(ev_files) |
|
53 |
|
|
|
54 |
|
if length(obj.param_names) == 1 |
|
55 |
|
obj.params = {params}; |
|
56 |
|
obj.ev_files = ev_files; |
|
57 |
|
elseif length(obj.param_names) == 2 |
|
58 |
|
% attempt to reshape by first column |
|
59 |
|
param1_value_no = numel(unique(params(:,1))); |
|
60 |
|
assert(mod(evaluations_no, param1_value_no)==0,... |
|
61 |
|
'number of evaluations per value of parameter 1 seems to be non-uniform.'); |
|
62 |
|
dimensions = [evaluations_no/param1_value_no, param1_value_no] |
|
63 |
|
obj.params{1} = reshape(params(:,1), dimensions) |
|
64 |
|
obj.params{2} = reshape(params(:,2), dimensions) |
|
65 |
|
obj.ev_files = reshape(ev_files, dimensions); |
|
66 |
|
end |
|
67 |
|
end |
|
|
42 |
|
cellarray = cell(obj.dimensions); |
|
43 |
|
for k=1:obj.evaluations_no |
|
44 |
|
cellarray{k} = get_field(obj.evaluations{k}); |
|
45 |
|
end |
|
46 |
|
end |
68 |
47 |
|
|
69 |
48 |
%% GETTERS |
%% GETTERS |
70 |
49 |
function dimensions = get.dimensions(obj) |
function dimensions = get.dimensions(obj) |
|
... |
... |
classdef meta_ev < class_conveniences |
73 |
52 |
function evaluations_no = get.evaluations_no(obj) |
function evaluations_no = get.evaluations_no(obj) |
74 |
53 |
evaluations_no = numel(obj.ev_files); |
evaluations_no = numel(obj.ev_files); |
75 |
54 |
end |
end |
|
55 |
|
function tracepairs_no = get.tracepairs_no(obj) |
|
56 |
|
tracepairs_no = unique(cell2mat(obj.for_each_evaluation('tracepairs_no'))); |
|
57 |
|
assert(length(tracepairs_no)==1,... |
|
58 |
|
'Evaluations do not seem to all have the same number of trace pairs.'); |
|
59 |
|
end |
|
60 |
|
function opt_logneg_corrected = get.opt_logneg_corrected(obj) |
|
61 |
|
opt_logneg_corrected = cell([1, obj.tracepairs_no]); |
|
62 |
|
for k=1:obj.tracepairs_no |
|
63 |
|
opt_logneg_corrected{k} = cell2mat(obj.for_each_evaluation('opt_logneg_corrected', k)); |
|
64 |
|
end |
|
65 |
|
end |
|
66 |
|
function opt_pulse_gammas = get.opt_pulse_gammas(obj) |
|
67 |
|
opt_pulse_gammas = cell([1, obj.tracepairs_no]); |
|
68 |
|
for k=1:obj.tracepairs_no |
|
69 |
|
opt_pulse_gammas{k} = cell2mat(obj.for_each_evaluation('opt_pulse_gammas', k)); |
|
70 |
|
end |
|
71 |
|
end |
76 |
72 |
end |
end |
77 |
73 |
|
|
78 |
74 |
end |
end |