Subject | Hash | Author | Date (UTC) |
---|---|---|---|
try to rig ssim to mae to see how it work | 0881597408f3531982df43a1503a193c4874bcfa | Thai Thien | 2020-12-06 16:02:02 |
try remove padding | 0f1f913d8f99210f2f53309ac44c71ed9baf0b76 | Thai Thien | 2020-12-06 15:46:46 |
a | 147a73727888e4bbcd3584fb32ae60a62b43b77a | Thai Thien | 2020-12-06 15:41:18 |
reduction = sum | caaf7ea2f013097c2d0275a3c49bffb6ae7e4b69 | Thai Thien | 2020-12-06 15:40:13 |
cuda() and we fix | 41f49e7aa28595cb6438519dddb5e17434a44d3e | Thai Thien | 2020-12-06 15:34:53 |
minor fix 138 | 6178f63cb061ec7086a1748a8e9d4f4a03ea96e5 | Thai Thien | 2020-12-06 15:33:08 |
fix measure ssim psnr | 88bb9b78e8ae45199074aa1076b15c73f13e6cb6 | Thai Thien | 2020-12-06 15:30:58 |
print y and y_pred shape | 90ab90465dabc4bd1171f4500eb01c45cca97420 | Thai Thien | 2020-12-06 15:23:09 |
ccnn baseline | f02c3084f28f811879e36e9a309993d468535dc3 | Thai Thien | 2020-12-06 15:08:11 |
ccnn shb and sha | d1d4152ada2c5dfc18c65299f32cb12935b90fe4 | Thai Thien | 2020-12-06 14:46:36 |
sha | 3196ece275027e4d032a0bddb84ce310c15f2380 | Thai Thien | 2020-12-06 13:46:28 |
abs clamp | 524c6f7196908527367ddcbfc340107e4092cc6e | Thai Thien | 2020-12-06 11:16:12 |
use abs instead of ssim | 92226d63c9732e66bf50f0b78e61f915ad2bce77 | Thai Thien | 2020-12-06 10:56:56 |
claim both y and y_pred | d1f6764a691fc2f2f1adc63ae65d63a8347d8a45 | Thai Thien | 2020-12-06 10:52:14 |
clamp 0.0 | 5569f7dad3c9e792e65636bb29b66a84ff250282 | Thai Thien | 2020-12-06 10:46:57 |
dataloader target crop | e41c17147de7c05f213329009c7662fbb2f1dc91 | Thai Thien | 2020-12-06 10:43:12 |
clamp min = 0 | 5245898e5282aa4cdc4b6539e68cb36a1c2d0c1f | Thai Thien | 2020-12-06 10:40:47 |
fix metric | 9739b99b836657377eb9dce05fafeef4a90546e9 | Thai Thien | 2020-12-06 10:38:37 |
eval density | d02232a419cd22bc79e0325c1c6791a7e5fc15b0 | Thai Thien | 2020-12-06 10:37:22 |
. | 926498e13908770b072aeca0ccecbf5d3a64808e | Thai Thien | 2020-12-06 10:27:13 |
File | Lines added | Lines deleted |
---|---|---|
crowd_counting_error_metrics.py | 6 | 1 |
File crowd_counting_error_metrics.py changed (mode: 100644) (index abe7171..8fee5ea) | |||
... | ... | class CrowdCountingMeanSSIMabs(Metric): | |
138 | 138 | # pad_density_map_tensor[:, 0, :y_pred.shape[2],:y_pred.shape[3]] = y_pred | # pad_density_map_tensor[:, 0, :y_pred.shape[2],:y_pred.shape[3]] = y_pred |
139 | 139 | # y_pred = pad_density_map_tensor | # y_pred = pad_density_map_tensor |
140 | 140 | ||
141 | ssim_metric = piq.ssim(y, y_pred, reduction="sum") | ||
141 | rig_y = torch.sum(y) | ||
142 | rig_y_pred = torch.sum(y_pred) | ||
143 | # ssim_metric = piq.ssim(y, y_pred, reduction="sum") | ||
144 | ssim_metric = torch.abs(rig_y - rig_y_pred) | ||
145 | |||
142 | 146 | ||
143 | 147 | self._sum += ssim_metric.item() | self._sum += ssim_metric.item() |
144 | 148 | # we multiply because ssim calculate mean of each image in batch | # we multiply because ssim calculate mean of each image in batch |
... | ... | class CrowdCountingMeanPSNRabs(Metric): | |
179 | 183 | # y_pred = pad_density_map_tensor | # y_pred = pad_density_map_tensor |
180 | 184 | ||
181 | 185 | psnr_metric = piq.psnr(y, y_pred, reduction="sum") | psnr_metric = piq.psnr(y, y_pred, reduction="sum") |
186 | # psnr_metric = torch.abs((y-y_pred).sum()) | ||
182 | 187 | ||
183 | 188 | self._sum += psnr_metric.item() | self._sum += psnr_metric.item() |
184 | 189 | # we multiply because ssim calculate mean of each image in batch | # we multiply because ssim calculate mean of each image in batch |