File experiment_main.py changed (mode: 100644) (index abdc5db..5915299) |
... |
... |
if __name__ == "__main__": |
68 |
68 |
# model |
# model |
69 |
69 |
model_name = args.model |
model_name = args.model |
70 |
70 |
experiment.log_other("model", model_name) |
experiment.log_other("model", model_name) |
|
71 |
|
experiment.add_tag(model_name) |
71 |
72 |
if model_name == "M1": |
if model_name == "M1": |
72 |
73 |
model = M1() |
model = M1() |
73 |
74 |
elif model_name == "M2": |
elif model_name == "M2": |
|
... |
... |
if __name__ == "__main__": |
121 |
122 |
elif args.loss_fn == "L1": |
elif args.loss_fn == "L1": |
122 |
123 |
loss_fn = nn.L1Loss(reduction='sum').to(device) |
loss_fn = nn.L1Loss(reduction='sum').to(device) |
123 |
124 |
print("use L1Loss") |
print("use L1Loss") |
|
125 |
|
elif args.loss_fn == "L1Mean": |
|
126 |
|
loss_fn = nn.L1Loss(reduction='mean').to(device) |
|
127 |
|
print("use L1Mean") |
124 |
128 |
elif args.loss_fn == "MSEMean": |
elif args.loss_fn == "MSEMean": |
125 |
129 |
loss_fn = nn.MSELoss(reduction='mean').to(device) |
loss_fn = nn.MSELoss(reduction='mean').to(device) |
126 |
130 |
print("use MSEMean") |
print("use MSEMean") |
127 |
131 |
elif args.loss_fn == "MSENone": |
elif args.loss_fn == "MSENone": |
|
132 |
|
""" |
|
133 |
|
Doesnt work |
|
134 |
|
because |
|
135 |
|
RuntimeError: grad can be implicitly created only for scalar outputs |
|
136 |
|
""" |
128 |
137 |
loss_fn = nn.MSELoss(reduction='none').to(device) |
loss_fn = nn.MSELoss(reduction='none').to(device) |
129 |
138 |
print("use MSE without any reduction") |
print("use MSE without any reduction") |
|
139 |
|
experiment.add_tag(args.loss_fn) |
130 |
140 |
|
|
131 |
141 |
if args.optim == "adam": |
if args.optim == "adam": |
132 |
142 |
optimizer = torch.optim.Adam(model.parameters(), args.lr, |
optimizer = torch.optim.Adam(model.parameters(), args.lr, |
|
... |
... |
if __name__ == "__main__": |
137 |
147 |
weight_decay=args.decay, |
weight_decay=args.decay, |
138 |
148 |
momentum=args.momentum) |
momentum=args.momentum) |
139 |
149 |
print("use sgd") |
print("use sgd") |
|
150 |
|
experiment.add_tag(args.optim) |
140 |
151 |
|
|
141 |
152 |
trainer = create_supervised_trainer(model, optimizer, loss_fn, device=device) |
trainer = create_supervised_trainer(model, optimizer, loss_fn, device=device) |
142 |
153 |
evaluator_train = create_supervised_evaluator(model, |
evaluator_train = create_supervised_evaluator(model, |