List of commits:
Subject Hash Author Date (UTC)
add L1Mean, add experiment tag on cometml 125f03f6f136bde9fa11b00a749b8a0c3de51534 Thai Thien 2020-06-13 04:15:30
msenone f68f48cc1a2e28a65da368a9a66ebec9f8694467 Thai Thien 2020-06-13 03:54:44
train script 2b142c16cce5403d0d673077d2b1e442af072e42 Thai Thien 2020-06-12 16:42:25
train script 67923fc98cd4f82880e973f7dbf143c09ffcf8e8 Thai Thien 2020-06-12 16:01:59
ccnnv8 adam t1 sha, H3 0cab419a2c9747611347b6ddb75ca8a5cb20eb79 Thai Thien 2020-06-11 16:21:47
ccnv8 adam t1 shb edd704f19c3d58d959c13b96100498c8809b309c Thai Thien 2020-06-11 15:51:21
ccnnv8 4e8e6e864c3f2fea80a3b61addbc26eb8f3ae059 Thai Thien 2020-06-11 15:47:04
bigtail7 cuda4 fdde3eb95706e95cdc0e8d81f93f2e08036d3192 Thai Thien 2020-06-11 15:45:38
train script, bigtail6, bigtail7 shb ea5758dcd7d8428e694cc84d50c81267eabcef23 Thai Thien 2020-06-11 15:36:54
WIP 3d7e1f10700c05bf7672cbf46ae6cafae8f2330f Thai Thien 2020-06-11 13:07:18
return x c750d65fe266979e9cdebf9a53b2af343462fbda Thai Thien 2020-06-11 12:39:13
bigtail5 b750f0037993fdfdda6433b1982f5612d13aa1a6 Thai Thien 2020-06-11 12:32:28
adam t3 t4 933528ca8870affc741e989520172819382db0c0 Thai Thien 2020-06-10 07:59:26
adam t1 and adam t2 4202f1b609dc90197990e014addce68a04d0b8a8 Thai Thien 2020-06-09 15:23:49
t8 2dda6cd71a7aa50e760dfdcdfbdcdedfce36b836 Thai Thien 2020-06-09 15:12:20
t7 2ff8d0931ae51a93915721202aaa17c38c2918cc Thai Thien 2020-06-09 15:08:32
t5 t6 7eeeb38e47fc4b59750438d66c911a7a93573b91 Thai Thien 2020-06-09 14:53:05
t4 e58849acc2d608f95130b58cafbe642f5f67a269 Thai Thien 2020-06-08 15:54:08
sgd t3 d6a8816d042d837578e095e748167abdb97acdd2 Thai Thien 2020-06-08 15:48:55
meow 776073961973fb7c5fa04a86b3c642627fa8b1ee Thai Thien 2020-06-08 15:18:04
Commit 125f03f6f136bde9fa11b00a749b8a0c3de51534 - add L1Mean, add experiment tag on cometml
Author: Thai Thien
Author date (UTC): 2020-06-13 04:15
Committer name: Thai Thien
Committer date (UTC): 2020-06-13 04:15
Parent(s): f68f48cc1a2e28a65da368a9a66ebec9f8694467
Signer:
Signing key:
Signing status: N
Tree: a1b29391813aadf388ec7ce34a95d4016da80ce1
File Lines added Lines deleted
experiment_main.py 11 0
File experiment_main.py changed (mode: 100644) (index abdc5db..5915299)
... ... if __name__ == "__main__":
68 68 # model # model
69 69 model_name = args.model model_name = args.model
70 70 experiment.log_other("model", model_name) experiment.log_other("model", model_name)
71 experiment.add_tag(model_name)
71 72 if model_name == "M1": if model_name == "M1":
72 73 model = M1() model = M1()
73 74 elif model_name == "M2": elif model_name == "M2":
 
... ... if __name__ == "__main__":
121 122 elif args.loss_fn == "L1": elif args.loss_fn == "L1":
122 123 loss_fn = nn.L1Loss(reduction='sum').to(device) loss_fn = nn.L1Loss(reduction='sum').to(device)
123 124 print("use L1Loss") print("use L1Loss")
125 elif args.loss_fn == "L1Mean":
126 loss_fn = nn.L1Loss(reduction='mean').to(device)
127 print("use L1Mean")
124 128 elif args.loss_fn == "MSEMean": elif args.loss_fn == "MSEMean":
125 129 loss_fn = nn.MSELoss(reduction='mean').to(device) loss_fn = nn.MSELoss(reduction='mean').to(device)
126 130 print("use MSEMean") print("use MSEMean")
127 131 elif args.loss_fn == "MSENone": elif args.loss_fn == "MSENone":
132 """
133 Doesnt work
134 because
135 RuntimeError: grad can be implicitly created only for scalar outputs
136 """
128 137 loss_fn = nn.MSELoss(reduction='none').to(device) loss_fn = nn.MSELoss(reduction='none').to(device)
129 138 print("use MSE without any reduction") print("use MSE without any reduction")
139 experiment.add_tag(args.loss_fn)
130 140
131 141 if args.optim == "adam": if args.optim == "adam":
132 142 optimizer = torch.optim.Adam(model.parameters(), args.lr, optimizer = torch.optim.Adam(model.parameters(), args.lr,
 
... ... if __name__ == "__main__":
137 147 weight_decay=args.decay, weight_decay=args.decay,
138 148 momentum=args.momentum) momentum=args.momentum)
139 149 print("use sgd") print("use sgd")
150 experiment.add_tag(args.optim)
140 151
141 152 trainer = create_supervised_trainer(model, optimizer, loss_fn, device=device) trainer = create_supervised_trainer(model, optimizer, loss_fn, device=device)
142 153 evaluator_train = create_supervised_evaluator(model, evaluator_train = create_supervised_evaluator(model,
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using git:
git clone git://git.rocketgit.com/user/hahattpro/crowd_counting_framework

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main