List of commits:
Subject Hash Author Date (UTC)
context aware visualize seem ok 1bdb6ffe77ca4e40ef8f299b2506df2266243db4 Thai Thien 2020-02-02 05:07:10
visualize eval context aware network seem ok f3fe45c23dfeab3730624737efabb0b14d23c25b Thai Thien 2020-02-02 04:50:34
visualize_shanghaitech_pacnn_with_perspective run without error 12366a2de2bd60ff4bd36e6132d44e37dedf7462 Thai Thien 2020-02-02 04:21:16
eval context aware network on ShanghaiTechB can run e8c454d2b6d287c830c1286c9a37884b3cfc615f Thai Thien 2020-02-02 04:09:14
import ShanghaiTechDataPath in data_util e81eb56315d44375ff5c0e747d61456601492f8f Thai Thien 2020-02-02 04:04:36
add model_context_aware_network.py 2a36025c001d85afc064c090f4d22987b328977b Thai Thien 2020-02-02 03:46:38
PACNN (TODO: test this) 44d5ae7ec57c760fb4f105dd3e3492148a0cc075 Thai Thien 2020-02-02 03:40:26
add data path 80134de767d0137a663f343e4606bafc57a1bc1f Thai Thien 2020-02-02 03:38:21
test if ShanghaiTech datapath is correct 97ee84944a4393ec3732879b24f614826f8e7798 Thai Thien 2020-02-01 03:57:31
refactor and test ShanghaiTech datapath 9542ebc00f257edc38690180b7a4353794be4019 Thai Thien 2020-02-01 03:53:49
fix the unzip flow b53c5989935335377eb6a88c942713d3eccc5df7 Thai Thien 2020-02-01 03:53:13
data_script run seem ok 67420c08fc1c10a66404d3698994865726a106cd Thai Thien 2020-02-01 03:33:18
add perspective 642d6fff8c9f31e510fda85a7fb631fb855d8a6d Thai Thien 2019-10-06 16:54:44
fix padding with p 86c2fa07822d956a34b3b37e14da485a4249f01b Thai Thien 2019-10-06 02:52:58
pacnn perspective loss fb673e38a5f24ae9004fe2b7b93c88991e0c2304 Thai Thien 2019-10-06 01:38:28
data_flow shanghaitech_pacnn_with_perspective seem working 91d350a06f358e03223966297d124daee94123d0 Thai Thien 2019-10-06 01:31:11
multiscale loss and final loss only mode c65dd0e74ad28503821e5c8651a3b47b4a0c7c64 Thai Thien 2019-10-05 15:58:19
wip : perspective map eac63f2671dc5b064753acc4f40bf0f9f216ad2a Thai Thien 2019-10-04 16:26:56
shell script f2106e700b6f6174d4dd276f25ec6f3d9ff239bb thient 2019-10-04 07:42:51
WIP 42c7c8e1d772fbbda61a4bdf9e329f74e1efb600 tthien 2019-10-03 17:52:47
Commit 1bdb6ffe77ca4e40ef8f299b2506df2266243db4 - context aware visualize seem ok
Author: Thai Thien
Author date (UTC): 2020-02-02 05:07
Committer name: Thai Thien
Committer date (UTC): 2020-02-02 05:07
Parent(s): f3fe45c23dfeab3730624737efabb0b14d23c25b
Signer:
Signing key:
Signing status: N
Tree: eae29b15ba8602c65c1d71618cb0c04d813e33f0
File Lines added Lines deleted
eval_context_aware_network.py 24 11
visualize_util.py 9 0
File eval_context_aware_network.py changed (mode: 100644) (index 6c8d057..9b254c3)
... ... from torchvision import transforms
10 10 from models.context_aware_network import CANNet from models.context_aware_network import CANNet
11 11 from data_util import ShanghaiTechDataPath from data_util import ShanghaiTechDataPath
12 12 from hard_code_variable import HardCodeVariable from hard_code_variable import HardCodeVariable
13 from visualize_util import save_img, save_density_map
13 from visualize_util import save_img, save_density_map, save_density_map_with_colorrange
14 14
15 15 _description=""" _description="""
16 16 This file run predict This file run predict
 
... ... for i in range(len(img_paths)):
92 92 pred.append(pred_sum) pred.append(pred_sum)
93 93 gt.append(np.sum(groundtruth)) gt.append(np.sum(groundtruth))
94 94 print("done ", i, "pred ",pred_sum, " gt ", np.sum(groundtruth)) print("done ", i, "pred ",pred_sum, " gt ", np.sum(groundtruth))
95
96 max_people_per_pix = 0
97 if density_1.max() > max_people_per_pix:
98 max_people_per_pix = density_1.max()
99 if density_2.max() > max_people_per_pix:
100 max_people_per_pix = density_2.max()
101 if density_3.max() > max_people_per_pix:
102 max_people_per_pix = density_3.max()
103 if density_4.max() > max_people_per_pix:
104 max_people_per_pix = density_4.max()
105
95 106 ## print out visual ## print out visual
96 name_prefix = os.path.join(saved_folder, "sample_"+str(i))
97 save_img(img_original_1, name_prefix+"_img1.png")
98 save_img(img_original_2, name_prefix + "_img2.png")
99 save_img(img_original_3, name_prefix + "_img3.png")
100 save_img(img_original_4, name_prefix + "_img4.png")
101
102 save_density_map(density_1.squeeze(), name_prefix + "_pred1.png")
103 save_density_map(density_2.squeeze(), name_prefix + "_pred2.png")
104 save_density_map(density_3.squeeze(), name_prefix + "_pred3.png")
105 save_density_map(density_4.squeeze(), name_prefix + "_pred4.png")
107 if IS_VISUAL:
108 name_prefix = os.path.join(saved_folder, "sample_"+str(i))
109 save_img(img_original_1, name_prefix+"_img1.png")
110 save_img(img_original_2, name_prefix + "_img2.png")
111 save_img(img_original_3, name_prefix + "_img3.png")
112 save_img(img_original_4, name_prefix + "_img4.png")
113
114 save_density_map_with_colorrange(density_1.squeeze(), name_prefix + "_pred1.png", 0, 0.18)
115 save_density_map_with_colorrange(density_2.squeeze(), name_prefix + "_pred2.png", 0, 0.18)
116 save_density_map_with_colorrange(density_3.squeeze(), name_prefix + "_pred3.png", 0, 0.18)
117 save_density_map_with_colorrange(density_4.squeeze(), name_prefix + "_pred4.png", 0, 0.18)
106 118 ## ##
107 119
108 120 print(len(pred)) print(len(pred))
 
... ... rmse = np.sqrt(mean_squared_error(pred,gt))
112 124
113 125 print('MAE: ',mae) print('MAE: ',mae)
114 126 print('RMSE: ',rmse) print('RMSE: ',rmse)
127 print("max people per pix ", max_people_per_pix)
File visualize_util.py changed (mode: 100644) (index 4064de3..0190315)
... ... def save_density_map(density_map, name):
14 14 plt.margins(0, 0) plt.margins(0, 0)
15 15 plt.imshow(density_map, cmap=CM.jet) plt.imshow(density_map, cmap=CM.jet)
16 16 plt.savefig(name, dpi=600, bbox_inches='tight', pad_inches=0) plt.savefig(name, dpi=600, bbox_inches='tight', pad_inches=0)
17 plt.close()
17 18
19 def save_density_map_with_colorrange(density_map, name, vmin, vmax):
20 plt.figure(dpi=600)
21 plt.axis('off')
22 plt.margins(0, 0)
23 plt.imshow(density_map, cmap=CM.jet)
24 plt.clim(vmin, vmax)
25 plt.savefig(name, dpi=600, bbox_inches='tight', pad_inches=0)
26 plt.close()
18 27
19 28 def save_img(imgnp, name): def save_img(imgnp, name):
20 29 # plt.imshow(imgnp[0].permute(1, 2, 0).numpy()) # plt.imshow(imgnp[0].permute(1, 2, 0).numpy())
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using git:
git clone git://git.rocketgit.com/user/hahattpro/crowd_counting_framework

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main