Subject | Hash | Author | Date (UTC) |
---|---|---|---|
ccnn no padding at output layer | 57563fc07f656c63f807de4d80712ff11345109d | Thai Thien | 2020-03-04 17:36:43 |
fix dimension of ccnn | f4439d9a78273ab3ba450f31a528509816b4352f | Thai Thien | 2020-03-04 17:32:48 |
ready to train | dbe0d6c3271dbb22490f0877fa31ba9cd7852b99 | Thai Thien | 2020-03-04 15:55:05 |
done implement c-cnn | 2deecef953baf1e07ce5cf5477d208bc7ffa34cf | Thai Thien | 2020-03-03 17:25:03 |
fix script | 0e9d372b9ad60b32939f1e558b2a59fc7d518fa2 | Thai Thien | 2020-03-02 16:23:55 |
simple v3 to 91 epoch | 539fdd03c3e3497fd22b7db2aaa14f067cbf6f8d | Thai Thien | 2020-03-02 16:09:43 |
we train on all training data and validate on test data | 9407ef8d5b7c47c53d6f98dcb3c20208aad1d7a9 | Thai Thien | 2020-03-01 15:36:46 |
load and continue train v3 | 12421fb7330e5c9d2eed4f6e574dfe69bdfddefc | Thai Thien | 2020-03-01 14:50:01 |
add env file | b1ed02088b01af42efc8d6963b3699e0a5c31c01 | Thai Thien | 2020-03-01 11:10:56 |
sanity check dataloader | 034daa8bef69daff92891cc42b988a6c77b010f9 | Thai Thien | 2020-03-01 10:24:38 |
print train loader len | eef3995f63a631e0ec5d92e31f5d7db27fd04401 | Thai Thien | 2020-03-01 05:17:55 |
simple v3 t1 | 9ee69fce793709c3dcc692de73ddb9d01c54670e | Thai Thien | 2020-03-01 05:08:40 |
try fix load model not training | a9d6dc79a460f15bd34bc7c6a4e1359209f59f27 | Thai Thien | 2020-03-01 05:04:48 |
continue training for attn can adcrowdnet simple | 437fe77a4f50b6c6098a5251dbb42be74d8cdfc4 | Thai Thien | 2020-03-01 04:40:18 |
can use GPU 1 | 084554baa67d3eaa517cdad7be3ac3d1e8ba3e2c | Thai Thien | 2020-03-01 03:41:48 |
well, fix can train script actually | 1ff1cae8b9fc75fddc4778db804d1469713e55b2 | Thai Thien | 2020-03-01 03:25:29 |
can fix | a32e4697517e555cccaf3322250d8c298284b5aa | Thai Thien | 2020-03-01 03:24:19 |
train script | 0b9279193b68083ccb8d5072dcee333c3e0712e8 | Thai Thien | 2020-03-01 02:24:04 |
ready train can | e774b212367c0bf6b8aaa133afc3845a427a9359 | Thai Thien | 2020-03-01 02:20:35 |
simple v3 | 245472ed0682c617b1975f82c7a0c15ee3494818 | Thai Thien | 2020-02-29 17:43:39 |
File | Lines added | Lines deleted |
---|---|---|
models/compact_cnn.py | 2 | 2 |
File models/compact_cnn.py changed (mode: 100644) (index 2266cd8..465ef6a) | |||
... | ... | class CompactCNN(nn.Module): | |
15 | 15 | self.red_cnn = nn.Conv2d(3, 10, 9, padding=4) | self.red_cnn = nn.Conv2d(3, 10, 9, padding=4) |
16 | 16 | self.green_cnn = nn.Conv2d(3, 14, 7, padding=3) | self.green_cnn = nn.Conv2d(3, 14, 7, padding=3) |
17 | 17 | self.blue_cnn = nn.Conv2d(3, 16, 5, padding=2) | self.blue_cnn = nn.Conv2d(3, 16, 5, padding=2) |
18 | self.max_pooling = nn.MaxPool2d(2, stride=2) | ||
18 | self.max_pooling = nn.MaxPool2d(kernel_size=2, stride=2) | ||
19 | 19 | ||
20 | 20 | self.c1 = nn.Conv2d(40, 60, 3, padding=1) | self.c1 = nn.Conv2d(40, 60, 3, padding=1) |
21 | 21 | self.c2 = nn.Conv2d(60, 40, 3, padding=1) | self.c2 = nn.Conv2d(60, 40, 3, padding=1) |
22 | 22 | self.c3 = nn.Conv2d(40, 20, 3, padding=1) | self.c3 = nn.Conv2d(40, 20, 3, padding=1) |
23 | 23 | self.c4 = nn.Conv2d(20, 10, 3, padding=1) | self.c4 = nn.Conv2d(20, 10, 3, padding=1) |
24 | self.output = nn.Conv2d(10, 1, 1, padding=1) | ||
24 | self.output = nn.Conv2d(10, 1, 1) | ||
25 | 25 | ||
26 | 26 | def forward(self,x): | def forward(self,x): |
27 | 27 | x_red = self.max_pooling(F.relu(self.red_cnn(x), inplace=True)) | x_red = self.max_pooling(F.relu(self.red_cnn(x), inplace=True)) |