Subject | Hash | Author | Date (UTC) |
---|---|---|---|
add bias = false to cnn | aba5e4a6c68ac5908e6244ce6c1b6b8cddfeb3c9 | Thai Thien | 2020-03-16 17:23:08 |
customccnn v3 with many batchnorm | 42ea62efcce0489673cdf71db792eb06d88fa5e6 | Thai Thien | 2020-03-16 17:22:30 |
CustomCNNv3 | b1b117d627147bc23727e55ab0c3026e920d9f20 | Thai Thien | 2020-03-16 16:05:02 |
fix dimension mismake again | d2341d70250a38071fefa9e6af24d7382ccf3138 | Thai Thien | 2020-03-15 09:29:03 |
fix custom ccnn dimension mismake | 8b2fe4f669469196685a37974b5e7fee5e9a5fe0 | Thai Thien | 2020-03-15 08:57:16 |
custom ccnn | fa81a2a28140cc8a84e3d5df49443ebe79e89268 | Thai Thien | 2020-03-15 08:54:19 |
forgot to add batch size arg in "train_compact_cnn" | bc9f7ca249f6719d8ee67a631bce184914d6b199 | Thai Thien | 2020-03-14 17:58:26 |
ccnn_v5_t2shb | 85dcfe49ecbcef2ccb1bb70b2a1b898440180286 | Thai Thien | 2020-03-14 17:43:00 |
add batchsize, ready train shb with batch5 | 254ba309e8031fcffb911f29d92a46f56106e8aa | Thai Thien | 2020-03-14 17:39:18 |
gpu 5 | 44fb230848afb391fa4efa4e412d3def3e32965a | Thai Thien | 2020-03-14 11:29:26 |
reduce lr to 1e-4 | 9c5e5b64621b33ae7ecc0124c204c4053296d426 | Thai Thien | 2020-03-14 11:24:24 |
train with scheduler | 390958d81f108ed3ca3cfe668ceef2a4ebf6a69f | Thai Thien | 2020-03-14 10:57:44 |
prepare to train | 8c16b70c805d48e4f944fa469cb370f1ee1297f0 | Thai Thien | 2020-03-14 10:15:22 |
add 1 move layer to ccnn | 10d5d3711dda204d7b059b79d775c0359d1a964d | Thai Thien | 2020-03-14 10:04:17 |
continue train | 3627b8cbf4192856d7453b72972a11659c34ae5f | Thai Thien | 2020-03-14 01:58:25 |
simple v4 t2 | 4dee2eba24246cf21a84dd7f9ef74d6c434edf1d | Thai Thien | 2020-03-13 18:36:33 |
nll to loss | 958f0895b81d42e6d31a0bbd5787211538c081fe | Thai Thien | 2020-03-13 16:27:27 |
ccnn_v4_t1 | 1f950b91f4fb89a0f08baf08dffb2a501546b64f | Thai Thien | 2020-03-13 16:23:39 |
add proxy | 9afb66a73e3ae24b2144faf311b128dbe5768f3c | Thai Thien | 2020-03-13 16:09:30 |
add comet, add scheduler to simple | 4ef5939124745dfc54ad8a87936954a2bde8a5a2 | Thai Thien | 2020-03-13 16:06:24 |
File | Lines added | Lines deleted |
---|---|---|
models/my_ccnn.py | 4 | 4 |
File models/my_ccnn.py changed (mode: 100644) (index 9ee3cc0..22c0cbf) | |||
... | ... | class CustomCNNv3(nn.Module): | |
168 | 168 | # self.blue_cnn = nn.Conv2d(3, 16, 5, padding=2) | # self.blue_cnn = nn.Conv2d(3, 16, 5, padding=2) |
169 | 169 | ||
170 | 170 | # ideal from crowd counting using DMCNN | # ideal from crowd counting using DMCNN |
171 | self.front_cnn_1 = nn.Conv2d(3, 20, 3, padding=1) | ||
171 | self.front_cnn_1 = nn.Conv2d(3, 20, 3, padding=1, bias=False) | ||
172 | 172 | self.front_bn1 = nn.BatchNorm2d(20) | self.front_bn1 = nn.BatchNorm2d(20) |
173 | self.front_cnn_2 = nn.Conv2d(20, 16, 3, padding=1) | ||
173 | self.front_cnn_2 = nn.Conv2d(20, 16, 3, padding=1, bias=False) | ||
174 | 174 | self.front_bn2 = nn.BatchNorm2d(16) | self.front_bn2 = nn.BatchNorm2d(16) |
175 | self.front_cnn_3 = nn.Conv2d(16, 14, 3, padding=1) | ||
175 | self.front_cnn_3 = nn.Conv2d(16, 14, 3, padding=1, bias=False) | ||
176 | 176 | self.front_bn3 = nn.BatchNorm2d(14) | self.front_bn3 = nn.BatchNorm2d(14) |
177 | self.front_cnn_4 = nn.Conv2d(14, 10, 3, padding=1) | ||
177 | self.front_cnn_4 = nn.Conv2d(14, 10, 3, padding=1, bias=False) | ||
178 | 178 | self.front_bn4 = nn.BatchNorm2d(10) | self.front_bn4 = nn.BatchNorm2d(10) |
179 | 179 | ||
180 | 180 | self.c0 = nn.Conv2d(40, 40, 3, padding=1) | self.c0 = nn.Conv2d(40, 40, 3, padding=1) |