Subject | Hash | Author | Date (UTC) |
---|---|---|---|
done single sample | cee46d309e9bb91ac4185b0e1b74deddefbc8553 | Thai Thien | 2020-09-06 15:24:39 |
a | ec2103c6617ad84375e5a7a0f3cde3b32ab012a0 | Thai Thien | 2020-08-23 15:39:51 |
pred_count | d9168903486d7a88c0763a8e93b18d1ed89d2d40 | Thai Thien | 2020-08-23 15:37:02 |
density_map_count = gt_density.detach().sum() | 015c7ab3a1734c6002065f775f90870b6c5bdbd5 | Thai Thien | 2020-08-23 15:35:31 |
no more eval, only one in function | 316b330c481224bb4264ddebb3dda2e317c32ac1 | Thai Thien | 2020-08-23 15:34:21 |
None type eval | 15a12c6dd1a6f828f5e852faecaf2a812dfddce8 | Thai Thien | 2020-08-23 15:30:17 |
run experiment on shb truncate 4 | 3faae2b49ed074fdb96fc20e916fee9eeac4f92f | Thai Thien | 2020-08-23 15:20:23 |
evaluatuion shb | b80eac051649c36ea1631cc4701e6d1d587d7887 | Thai Thien | 2020-08-23 09:26:45 |
fix evaluation shb | 51cbe92724973f64cb046f7f49fb1976400827e4 | Thai Thien | 2020-08-23 09:18:35 |
typo | 1cba17e02cc79ee73c4ad5c9f1faab4913f92b01 | Thai Thien | 2020-08-23 08:53:21 |
fix file, mae, mse | 245396d814f5d83dff1fd1ecc9fcd403be1805cb | Thai Thien | 2020-08-23 08:52:16 |
file name strage stuff | caeb9f9608e91cf6a1323d9ae9f4fb215c4dd6ea | Thai Thien | 2020-08-23 08:44:54 |
TypeError: can only concatenate str (not "list") to str | e8aebcfb782966c11c3ca116b5a9cc254021a73d | Thai Thien | 2020-08-23 08:41:02 |
key error | 5732100d6aca8e3fea6a4d25270edefbc8148a2a | Thai Thien | 2020-08-23 08:39:09 |
fix target | fdbda2c6923dd164560448a445cd64ff413fc804 | Thai Thien | 2020-08-23 08:37:48 |
test path | 06d268f873e6ceea93a8e8741d819a03b324cedb | Thai Thien | 2020-08-23 08:27:38 |
a | 1d73d926894edbc600db678316b9b24a583c4cb8 | Thai Thien | 2020-08-23 08:25:58 |
test set | bb1e40fc7806c8bef5e94fbaa54ac9af3b599041 | Thai Thien | 2020-08-23 08:23:30 |
remove epoch stuff | 2cc6434aa298b6da90b4577ce529f971119b86c7 | Thai Thien | 2020-08-23 07:53:36 |
evaluation_shb_CompactCNNV7i_t1 | 28cf202a306b775967c6e466120b019ae1eb6a4d | Thai Thien | 2020-08-23 07:49:51 |
File | Lines added | Lines deleted |
---|---|---|
dataset_script/jhucrowd_density_map.py | 100 | 0 |
playground/.ipynb_checkpoints/jhucrowd_label-checkpoint.ipynb | 255 | 0 |
playground/0003.txt | 804 | 0 |
playground/jhucrowd_label.ipynb | 255 | 0 |
File dataset_script/jhucrowd_density_map.py added (mode: 100644) (index 0000000..1f75743) | |||
1 | import os | ||
2 | import pandas as pd | ||
3 | import numpy as np | ||
4 | import scipy | ||
5 | import scipy.spatial | ||
6 | import scipy.ndimage | ||
7 | from PIL import Image | ||
8 | import h5py | ||
9 | from visualize_util import save_density_map | ||
10 | |||
11 | def load_density_label(label_txt_path): | ||
12 | """ | ||
13 | |||
14 | :param label_txt_path: path to txt | ||
15 | :return: numpy array, p[sample, a] with a is 0 for x and 1 for y | ||
16 | """ | ||
17 | df = pd.read_csv(label_txt_path, sep=" ", header=None) | ||
18 | p = df.to_numpy() | ||
19 | return p | ||
20 | |||
21 | |||
22 | def gaussian_filter_density(gt): | ||
23 | """ | ||
24 | generate density map from gt | ||
25 | :param gt: matrix same shape as image, where annotation label as 1 | ||
26 | :return: | ||
27 | """ | ||
28 | print(gt.shape) | ||
29 | density = np.zeros(gt.shape, dtype=np.float32) | ||
30 | gt_count = np.count_nonzero(gt) | ||
31 | if gt_count == 0: | ||
32 | return density | ||
33 | |||
34 | pts = np.array(list(zip(np.nonzero(gt)[1], np.nonzero(gt)[0]))) | ||
35 | leafsize = 2048 | ||
36 | # build kdtree | ||
37 | pts_copy = pts.copy() | ||
38 | tree = scipy.spatial.KDTree(pts_copy, leafsize=leafsize) | ||
39 | # query kdtree | ||
40 | distances, locations = tree.query(pts, k=4) | ||
41 | |||
42 | print('generate density...') | ||
43 | for i, pt in enumerate(pts): | ||
44 | pt2d = np.zeros(gt.shape, dtype=np.float32) | ||
45 | pt2d[pt[1], pt[0]] = 1. | ||
46 | if gt_count > 1: | ||
47 | sigma = (distances[i][1] + distances[i][2] + distances[i][3]) * 0.1 | ||
48 | else: | ||
49 | sigma = np.average(np.array(gt.shape)) / 2. / 2. # case: 1 point | ||
50 | density += scipy.ndimage.filters.gaussian_filter(pt2d, sigma, mode='constant') | ||
51 | print('done.') | ||
52 | return density | ||
53 | |||
54 | def generate_density_map(img_path, label_path, output_path): | ||
55 | """ | ||
56 | |||
57 | :param img_path: | ||
58 | :param label_path: txt | ||
59 | :param output_path | ||
60 | :return: | ||
61 | """ | ||
62 | |||
63 | gt = load_density_label(label_path) | ||
64 | imgfile = Image.open(img_path).convert('RGB') | ||
65 | # imgfile = image.load_img(img_path) | ||
66 | img = np.asarray(imgfile) | ||
67 | |||
68 | # empty matrix zero | ||
69 | k = np.zeros((img.shape[0], img.shape[1])) | ||
70 | for i in range(0, len(gt)): | ||
71 | if int(gt[i][1]) < img.shape[0] and int(gt[i][0]) < img.shape[1]: | ||
72 | k[int(gt[i][1]), int(gt[i][0])] = 1 | ||
73 | k = gaussian_filter_density(k) | ||
74 | with h5py.File(output_path, 'w') as hf: | ||
75 | hf['density'] = k | ||
76 | return output_path | ||
77 | |||
78 | |||
79 | def t_single_density_map(): | ||
80 | img = "/data/jhu_crowd_v2.0/val/images/0003.jpg" | ||
81 | label = "/data/jhu_crowd_v2.0/val/gt/0003.txt" | ||
82 | out_path = "/data/jhu_crowd_v2.0/val/unittest/0003.txt" | ||
83 | out = generate_density_map(img, label, out_path) | ||
84 | print(out) | ||
85 | |||
86 | |||
87 | def print_density_map(density_path, density_img_out): | ||
88 | gt_file = h5py.File(density_path, 'r') | ||
89 | target = np.asarray(gt_file['density']) | ||
90 | save_density_map(target, density_img_out) | ||
91 | print("done print ", density_img_out) | ||
92 | |||
93 | if __name__ == "__main__": | ||
94 | # t_single_density_map() | ||
95 | print_density_map("/data/jhu_crowd_v2.0/val/unittest/0003.h5", "/data/jhu_crowd_v2.0/val/unittest/0003.png") | ||
96 | |||
97 | # ROOT = "/data/jhu_crowd_v2.0/val" | ||
98 | # images_folder = os.path.join(ROOT, "images") | ||
99 | # gt_path_folder = os.path.join(ROOT, "gt") | ||
100 |
File playground/.ipynb_checkpoints/jhucrowd_label-checkpoint.ipynb added (mode: 100644) (index 0000000..5ad7071) | |||
1 | { | ||
2 | "cells": [ | ||
3 | { | ||
4 | "cell_type": "code", | ||
5 | "execution_count": 2, | ||
6 | "metadata": {}, | ||
7 | "outputs": [], | ||
8 | "source": [ | ||
9 | "path = \"0003.txt\"" | ||
10 | ] | ||
11 | }, | ||
12 | { | ||
13 | "cell_type": "code", | ||
14 | "execution_count": 1, | ||
15 | "metadata": {}, | ||
16 | "outputs": [ | ||
17 | { | ||
18 | "name": "stdout", | ||
19 | "output_type": "stream", | ||
20 | "text": [ | ||
21 | "0003.txt\t jhucrowd_label.ipynb p_if_deformable_bug.py\r\n", | ||
22 | "ccnnv2_playground.py p_batch.py\t play_load_perspective_map.py\r\n", | ||
23 | "__init__.py\t p_can_adcrowdnet.py\r\n" | ||
24 | ] | ||
25 | } | ||
26 | ], | ||
27 | "source": [ | ||
28 | "!ls" | ||
29 | ] | ||
30 | }, | ||
31 | { | ||
32 | "cell_type": "code", | ||
33 | "execution_count": 3, | ||
34 | "metadata": {}, | ||
35 | "outputs": [], | ||
36 | "source": [ | ||
37 | "import pandas as pd" | ||
38 | ] | ||
39 | }, | ||
40 | { | ||
41 | "cell_type": "code", | ||
42 | "execution_count": 7, | ||
43 | "metadata": {}, | ||
44 | "outputs": [], | ||
45 | "source": [ | ||
46 | "df = pd.read_csv(path, sep=\" \", header=None)" | ||
47 | ] | ||
48 | }, | ||
49 | { | ||
50 | "cell_type": "code", | ||
51 | "execution_count": 9, | ||
52 | "metadata": {}, | ||
53 | "outputs": [ | ||
54 | { | ||
55 | "data": { | ||
56 | "text/html": [ | ||
57 | "<div>\n", | ||
58 | "<style scoped>\n", | ||
59 | " .dataframe tbody tr th:only-of-type {\n", | ||
60 | " vertical-align: middle;\n", | ||
61 | " }\n", | ||
62 | "\n", | ||
63 | " .dataframe tbody tr th {\n", | ||
64 | " vertical-align: top;\n", | ||
65 | " }\n", | ||
66 | "\n", | ||
67 | " .dataframe thead th {\n", | ||
68 | " text-align: right;\n", | ||
69 | " }\n", | ||
70 | "</style>\n", | ||
71 | "<table border=\"1\" class=\"dataframe\">\n", | ||
72 | " <thead>\n", | ||
73 | " <tr style=\"text-align: right;\">\n", | ||
74 | " <th></th>\n", | ||
75 | " <th>0</th>\n", | ||
76 | " <th>1</th>\n", | ||
77 | " <th>2</th>\n", | ||
78 | " <th>3</th>\n", | ||
79 | " <th>4</th>\n", | ||
80 | " <th>5</th>\n", | ||
81 | " </tr>\n", | ||
82 | " </thead>\n", | ||
83 | " <tbody>\n", | ||
84 | " <tr>\n", | ||
85 | " <th>0</th>\n", | ||
86 | " <td>499</td>\n", | ||
87 | " <td>347</td>\n", | ||
88 | " <td>6</td>\n", | ||
89 | " <td>7</td>\n", | ||
90 | " <td>1</td>\n", | ||
91 | " <td>0</td>\n", | ||
92 | " </tr>\n", | ||
93 | " <tr>\n", | ||
94 | " <th>1</th>\n", | ||
95 | " <td>143</td>\n", | ||
96 | " <td>640</td>\n", | ||
97 | " <td>8</td>\n", | ||
98 | " <td>10</td>\n", | ||
99 | " <td>1</td>\n", | ||
100 | " <td>0</td>\n", | ||
101 | " </tr>\n", | ||
102 | " <tr>\n", | ||
103 | " <th>2</th>\n", | ||
104 | " <td>539</td>\n", | ||
105 | " <td>649</td>\n", | ||
106 | " <td>8</td>\n", | ||
107 | " <td>10</td>\n", | ||
108 | " <td>1</td>\n", | ||
109 | " <td>0</td>\n", | ||
110 | " </tr>\n", | ||
111 | " <tr>\n", | ||
112 | " <th>3</th>\n", | ||
113 | " <td>301</td>\n", | ||
114 | " <td>385</td>\n", | ||
115 | " <td>6</td>\n", | ||
116 | " <td>7</td>\n", | ||
117 | " <td>1</td>\n", | ||
118 | " <td>0</td>\n", | ||
119 | " </tr>\n", | ||
120 | " <tr>\n", | ||
121 | " <th>4</th>\n", | ||
122 | " <td>553</td>\n", | ||
123 | " <td>395</td>\n", | ||
124 | " <td>6</td>\n", | ||
125 | " <td>7</td>\n", | ||
126 | " <td>1</td>\n", | ||
127 | " <td>0</td>\n", | ||
128 | " </tr>\n", | ||
129 | " </tbody>\n", | ||
130 | "</table>\n", | ||
131 | "</div>" | ||
132 | ], | ||
133 | "text/plain": [ | ||
134 | " 0 1 2 3 4 5\n", | ||
135 | "0 499 347 6 7 1 0\n", | ||
136 | "1 143 640 8 10 1 0\n", | ||
137 | "2 539 649 8 10 1 0\n", | ||
138 | "3 301 385 6 7 1 0\n", | ||
139 | "4 553 395 6 7 1 0" | ||
140 | ] | ||
141 | }, | ||
142 | "execution_count": 9, | ||
143 | "metadata": {}, | ||
144 | "output_type": "execute_result" | ||
145 | } | ||
146 | ], | ||
147 | "source": [ | ||
148 | "df.head()" | ||
149 | ] | ||
150 | }, | ||
151 | { | ||
152 | "cell_type": "code", | ||
153 | "execution_count": 11, | ||
154 | "metadata": {}, | ||
155 | "outputs": [], | ||
156 | "source": [ | ||
157 | "p = df.to_numpy()\n" | ||
158 | ] | ||
159 | }, | ||
160 | { | ||
161 | "cell_type": "code", | ||
162 | "execution_count": 12, | ||
163 | "metadata": {}, | ||
164 | "outputs": [ | ||
165 | { | ||
166 | "data": { | ||
167 | "text/plain": [ | ||
168 | "array([[499, 347, 6, 7, 1, 0],\n", | ||
169 | " [143, 640, 8, 10, 1, 0],\n", | ||
170 | " [539, 649, 8, 10, 1, 0],\n", | ||
171 | " ...,\n", | ||
172 | " [962, 538, 8, 10, 1, 0],\n", | ||
173 | " [337, 399, 6, 7, 1, 0],\n", | ||
174 | " [445, 270, 5, 7, 1, 0]])" | ||
175 | ] | ||
176 | }, | ||
177 | "execution_count": 12, | ||
178 | "metadata": {}, | ||
179 | "output_type": "execute_result" | ||
180 | } | ||
181 | ], | ||
182 | "source": [ | ||
183 | "p" | ||
184 | ] | ||
185 | }, | ||
186 | { | ||
187 | "cell_type": "code", | ||
188 | "execution_count": 13, | ||
189 | "metadata": {}, | ||
190 | "outputs": [ | ||
191 | { | ||
192 | "data": { | ||
193 | "text/plain": [ | ||
194 | "347" | ||
195 | ] | ||
196 | }, | ||
197 | "execution_count": 13, | ||
198 | "metadata": {}, | ||
199 | "output_type": "execute_result" | ||
200 | } | ||
201 | ], | ||
202 | "source": [ | ||
203 | "p[0,1]" | ||
204 | ] | ||
205 | }, | ||
206 | { | ||
207 | "cell_type": "code", | ||
208 | "execution_count": 14, | ||
209 | "metadata": {}, | ||
210 | "outputs": [ | ||
211 | { | ||
212 | "data": { | ||
213 | "text/plain": [ | ||
214 | "347" | ||
215 | ] | ||
216 | }, | ||
217 | "execution_count": 14, | ||
218 | "metadata": {}, | ||
219 | "output_type": "execute_result" | ||
220 | } | ||
221 | ], | ||
222 | "source": [ | ||
223 | "p[0][1]" | ||
224 | ] | ||
225 | }, | ||
226 | { | ||
227 | "cell_type": "code", | ||
228 | "execution_count": null, | ||
229 | "metadata": {}, | ||
230 | "outputs": [], | ||
231 | "source": [] | ||
232 | } | ||
233 | ], | ||
234 | "metadata": { | ||
235 | "kernelspec": { | ||
236 | "display_name": "Python 3", | ||
237 | "language": "python", | ||
238 | "name": "python3" | ||
239 | }, | ||
240 | "language_info": { | ||
241 | "codemirror_mode": { | ||
242 | "name": "ipython", | ||
243 | "version": 3 | ||
244 | }, | ||
245 | "file_extension": ".py", | ||
246 | "mimetype": "text/x-python", | ||
247 | "name": "python", | ||
248 | "nbconvert_exporter": "python", | ||
249 | "pygments_lexer": "ipython3", | ||
250 | "version": "3.8.1" | ||
251 | } | ||
252 | }, | ||
253 | "nbformat": 4, | ||
254 | "nbformat_minor": 4 | ||
255 | } |
File playground/0003.txt added (mode: 100644) (index 0000000..12ef738) | |||
1 | 499 347 6 7 1 0 | ||
2 | 143 640 8 10 1 0 | ||
3 | 539 649 8 10 1 0 | ||
4 | 301 385 6 7 1 0 | ||
5 | 553 395 6 7 1 0 | ||
6 | 874 309 5 7 1 0 | ||
7 | 202 592 8 10 1 0 | ||
8 | 176 554 8 10 1 0 | ||
9 | 205 643 8 10 1 0 | ||
10 | 494 380 6 7 1 0 | ||
11 | 704 331 6 7 1 0 | ||
12 | 817 303 5 7 1 0 | ||
13 | 689 475 6 7 1 0 | ||
14 | 182 557 8 10 1 0 | ||
15 | 318 665 8 10 1 0 | ||
16 | 841 387 6 7 1 0 | ||
17 | 220 424 6 7 1 0 | ||
18 | 149 553 8 10 1 0 | ||
19 | 278 459 6 7 1 0 | ||
20 | 395 692 8 10 1 0 | ||
21 | 289 535 8 10 1 0 | ||
22 | 279 429 6 7 1 0 | ||
23 | 538 302 5 7 1 0 | ||
24 | 115 677 8 10 1 0 | ||
25 | 694 300 5 7 1 0 | ||
26 | 534 268 5 7 1 0 | ||
27 | 756 707 8 10 1 0 | ||
28 | 241 413 6 7 1 0 | ||
29 | 2 671 8 10 1 0 | ||
30 | 980 647 8 10 2 0 | ||
31 | 216 437 6 7 1 0 | ||
32 | 412 292 5 7 1 0 | ||
33 | 491 421 6 7 1 0 | ||
34 | 126 494 8 10 1 0 | ||
35 | 11 594 8 10 1 0 | ||
36 | 268 273 5 7 1 0 | ||
37 | 434 276 5 7 1 0 | ||
38 | 733 304 5 7 1 0 | ||
39 | 737 393 6 7 1 0 | ||
40 | 795 509 8 10 1 0 | ||
41 | 228 440 6 7 1 0 | ||
42 | 502 656 8 10 1 0 | ||
43 | 418 324 6 7 1 0 | ||
44 | 458 626 8 10 1 0 | ||
45 | 546 332 6 7 1 0 | ||
46 | 938 372 6 7 1 0 | ||
47 | 844 617 8 10 1 0 | ||
48 | 690 416 6 7 1 0 | ||
49 | 981 663 8 10 1 0 | ||
50 | 942 423 6 7 1 0 | ||
51 | 767 368 6 7 1 0 | ||
52 | 264 524 8 10 1 0 | ||
53 | 71 649 8 10 1 0 | ||
54 | 431 376 6 7 1 0 | ||
55 | 899 477 6 7 1 0 | ||
56 | 30 379 5 7 1 0 | ||
57 | 247 274 5 7 1 0 | ||
58 | 700 347 6 7 1 0 | ||
59 | 489 378 6 7 1 0 | ||
60 | 651 335 6 7 1 0 | ||
61 | 20 224 5 7 1 0 | ||
62 | 323 408 6 7 1 0 | ||
63 | 929 286 5 7 1 0 | ||
64 | 518 199 5 7 1 0 | ||
65 | 735 353 6 7 1 0 | ||
66 | 308 284 5 7 1 0 | ||
67 | 530 272 5 7 1 0 | ||
68 | 465 591 8 10 1 0 | ||
69 | 360 385 6 7 1 0 | ||
70 | 97 646 8 10 1 0 | ||
71 | 655 583 8 10 1 0 | ||
72 | 937 301 5 7 1 0 | ||
73 | 859 279 5 7 1 0 | ||
74 | 473 609 8 10 1 0 | ||
75 | 690 194 3 2 1 0 | ||
76 | 775 552 8 10 1 0 | ||
77 | 356 408 6 7 1 0 | ||
78 | 804 593 8 10 1 0 | ||
79 | 990 627 8 10 2 0 | ||
80 | 647 709 8 10 1 0 | ||
81 | 354 328 6 7 1 0 | ||
82 | 828 313 5 7 1 0 | ||
83 | 420 656 8 10 1 0 | ||
84 | 74 569 8 10 1 0 | ||
85 | 848 463 6 7 1 0 | ||
86 | 626 194 3 2 1 0 | ||
87 | 386 363 6 7 1 0 | ||
88 | 327 646 8 10 1 0 | ||
89 | 684 312 5 7 1 0 | ||
90 | 860 389 6 7 1 0 | ||
91 | 829 550 8 10 1 0 | ||
92 | 415 714 8 10 1 0 | ||
93 | 824 389 6 7 1 0 | ||
94 | 638 286 5 7 1 0 | ||
95 | 477 692 8 10 1 0 | ||
96 | 452 651 8 10 1 0 | ||
97 | 49 292 5 7 1 0 | ||
98 | 779 706 8 10 1 0 | ||
99 | 597 305 5 7 1 0 | ||
100 | 790 384 6 7 1 0 | ||
101 | 913 293 5 7 1 0 | ||
102 | 362 273 5 7 1 0 | ||
103 | 567 271 5 7 1 0 | ||
104 | 313 407 6 7 1 0 | ||
105 | 527 679 8 10 1 0 | ||
106 | 511 347 6 7 1 0 | ||
107 | 514 267 5 7 1 0 | ||
108 | 783 286 5 7 1 0 | ||
109 | 136 563 8 10 1 0 | ||
110 | 599 704 8 10 1 0 | ||
111 | 601 193 3 2 1 0 | ||
112 | 503 328 6 7 1 0 | ||
113 | 802 717 8 10 1 0 | ||
114 | 984 544 8 10 1 0 | ||
115 | 408 266 5 7 1 0 | ||
116 | 433 303 5 7 1 0 | ||
117 | 43 256 5 7 1 0 | ||
118 | 710 384 6 7 1 0 | ||
119 | 976 380 6 7 1 0 | ||
120 | 411 419 6 7 1 0 | ||
121 | 307 619 8 10 1 0 | ||
122 | 509 299 5 7 1 0 | ||
123 | 165 639 8 10 1 0 | ||
124 | 615 668 8 10 1 0 | ||
125 | 491 406 6 7 1 0 | ||
126 | 832 594 8 10 1 0 | ||
127 | 678 317 6 7 1 0 | ||
128 | 392 654 8 10 1 0 | ||
129 | 876 299 5 7 1 0 | ||
130 | 803 635 8 10 1 0 | ||
131 | 944 602 8 10 1 0 | ||
132 | 163 449 6 7 1 0 | ||
133 | 466 377 6 7 1 0 | ||
134 | 918 366 6 7 1 0 | ||
135 | 863 368 6 7 1 0 | ||
136 | 922 293 5 7 1 0 | ||
137 | 757 273 5 7 1 0 | ||
138 | 975 341 6 7 1 0 | ||
139 | 445 288 5 7 1 0 | ||
140 | 280 466 6 7 1 0 | ||
141 | 858 306 5 7 1 0 | ||
142 | 39 414 6 7 1 0 | ||
143 | 505 395 6 7 1 0 | ||
144 | 905 282 5 7 1 0 | ||
145 | 252 533 8 10 1 0 | ||
146 | 286 650 8 10 1 0 | ||
147 | 749 289 5 7 1 0 | ||
148 | 719 423 6 7 1 0 | ||
149 | 174 548 8 10 1 0 | ||
150 | 710 682 8 10 1 0 | ||
151 | 865 328 6 7 1 0 | ||
152 | 296 427 6 7 1 0 | ||
153 | 764 317 6 7 1 0 | ||
154 | 235 526 8 10 1 0 | ||
155 | 435 641 8 10 1 0 | ||
156 | 143 506 8 10 1 0 | ||
157 | 557 338 6 7 1 0 | ||
158 | 750 299 5 7 1 0 | ||
159 | 692 446 6 7 1 0 | ||
160 | 522 309 5 7 1 0 | ||
161 | 638 374 6 7 1 0 | ||
162 | 506 573 8 10 1 0 | ||
163 | 681 394 6 7 1 0 | ||
164 | 181 473 6 7 1 0 | ||
165 | 356 420 6 7 1 0 | ||
166 | 333 387 6 7 1 0 | ||
167 | 725 300 5 7 1 0 | ||
168 | 339 348 6 7 1 0 | ||
169 | 84 672 8 10 1 0 | ||
170 | 355 343 6 7 1 0 | ||
171 | 622 617 8 10 1 0 | ||
172 | 983 613 8 10 1 0 | ||
173 | 299 405 6 7 1 0 | ||
174 | 17 264 5 7 1 0 | ||
175 | 866 541 8 10 1 0 | ||
176 | 820 469 6 7 1 0 | ||
177 | 357 681 8 10 1 0 | ||
178 | 647 291 5 7 1 0 | ||
179 | 694 275 5 7 1 0 | ||
180 | 144 715 8 10 1 0 | ||
181 | 192 508 8 10 1 0 | ||
182 | 805 639 8 10 1 0 | ||
183 | 293 386 6 7 1 0 | ||
184 | 683 195 3 2 1 0 | ||
185 | 711 329 6 7 1 0 | ||
186 | 359 515 8 10 1 0 | ||
187 | 441 477 6 7 1 0 | ||
188 | 490 411 6 7 1 0 | ||
189 | 372 469 6 7 1 0 | ||
190 | 34 261 5 7 1 0 | ||
191 | 722 391 6 7 1 0 | ||
192 | 449 387 6 7 1 0 | ||
193 | 621 193 3 2 1 0 | ||
194 | 892 394 6 7 1 0 | ||
195 | 50 692 8 10 1 0 | ||
196 | 444 344 6 7 1 0 | ||
197 | 991 612 8 10 1 0 | ||
198 | 853 284 5 7 1 0 | ||
199 | 250 620 8 10 1 0 | ||
200 | 284 572 8 10 1 0 | ||
201 | 772 302 5 7 1 0 | ||
202 | 536 334 6 7 1 0 | ||
203 | 866 402 6 7 1 0 | ||
204 | 87 627 8 10 1 0 | ||
205 | 42 417 6 7 1 0 | ||
206 | 413 326 6 7 1 0 | ||
207 | 294 410 6 7 1 0 | ||
208 | 892 314 5 7 1 0 | ||
209 | 521 540 8 10 1 0 | ||
210 | 332 473 6 7 1 0 | ||
211 | 627 207 5 7 1 0 | ||
212 | 45 321 5 7 1 0 | ||
213 | 794 368 6 7 1 0 | ||
214 | 901 293 5 7 1 0 | ||
215 | 705 353 6 7 1 0 | ||
216 | 430 197 3 2 1 0 | ||
217 | 42 578 8 10 1 0 | ||
218 | 85 586 8 10 1 0 | ||
219 | 644 308 5 7 1 0 | ||
220 | 636 567 8 10 1 0 | ||
221 | 361 427 6 7 1 0 | ||
222 | 825 704 8 10 2 0 | ||
223 | 505 491 8 10 1 0 | ||
224 | 975 603 8 10 2 0 | ||
225 | 867 703 8 10 1 0 | ||
226 | 274 413 6 7 1 0 | ||
227 | 22 286 5 7 1 0 | ||
228 | 638 194 3 2 1 0 | ||
229 | 804 301 5 7 1 0 | ||
230 | 308 411 6 7 1 0 | ||
231 | 532 667 8 10 1 0 | ||
232 | 383 647 8 10 1 0 | ||
233 | 495 530 8 10 1 0 | ||
234 | 365 400 6 7 1 0 | ||
235 | 580 428 6 7 1 0 | ||
236 | 211 555 8 10 1 0 | ||
237 | 858 502 8 10 1 0 | ||
238 | 933 353 6 7 1 0 | ||
239 | 274 629 8 10 1 0 | ||
240 | 140 578 8 10 1 0 | ||
241 | 550 296 5 7 1 0 | ||
242 | 484 422 6 7 1 0 | ||
243 | 331 516 8 10 1 0 | ||
244 | 298 273 5 7 1 0 | ||
245 | 965 428 6 7 1 0 | ||
246 | 156 571 8 10 1 0 | ||
247 | 907 594 8 10 1 0 | ||
248 | 381 414 6 7 1 0 | ||
249 | 500 323 6 7 1 0 | ||
250 | 814 703 8 10 1 0 | ||
251 | 921 412 6 7 1 0 | ||
252 | 795 456 6 7 1 0 | ||
253 | 794 631 8 10 1 0 | ||
254 | 612 405 6 7 1 0 | ||
255 | 121 568 8 10 1 0 | ||
256 | 975 679 8 10 2 0 | ||
257 | 530 327 6 7 1 0 | ||
258 | 439 415 6 7 1 0 | ||
259 | 116 627 8 10 1 0 | ||
260 | 619 579 8 10 1 0 | ||
261 | 734 312 5 7 1 0 | ||
262 | 369 571 8 10 1 0 | ||
263 | 475 654 8 10 1 0 | ||
264 | 114 714 8 10 1 0 | ||
265 | 76 405 6 7 1 0 | ||
266 | 341 273 5 7 1 0 | ||
267 | 474 490 7 9 1 0 | ||
268 | 574 270 5 7 1 0 | ||
269 | 578 383 6 7 1 0 | ||
270 | 572 739 8 10 1 0 | ||
271 | 479 238 5 7 1 0 | ||
272 | 553 362 6 7 1 0 | ||
273 | 843 320 6 7 1 0 | ||
274 | 991 420 6 7 1 0 | ||
275 | 464 642 8 10 1 0 | ||
276 | 542 358 6 7 1 0 | ||
277 | 418 312 5 7 1 0 | ||
278 | 280 583 8 10 1 0 | ||
279 | 718 268 5 7 1 0 | ||
280 | 479 598 8 10 1 0 | ||
281 | 376 286 5 7 1 0 | ||
282 | 159 578 8 10 1 0 | ||
283 | 867 318 6 7 1 0 | ||
284 | 589 368 6 7 1 0 | ||
285 | 700 700 8 10 1 0 | ||
286 | 420 390 6 7 1 0 | ||
287 | 568 197 3 2 1 0 | ||
288 | 366 356 6 7 1 0 | ||
289 | 383 529 8 10 1 0 | ||
290 | 868 295 5 7 1 0 | ||
291 | 346 461 6 7 1 0 | ||
292 | 717 345 6 7 1 0 | ||
293 | 427 426 6 7 1 0 | ||
294 | 407 657 8 10 1 0 | ||
295 | 185 511 8 10 1 0 | ||
296 | 829 422 6 7 1 0 | ||
297 | 951 386 6 7 1 0 | ||
298 | 766 466 6 7 1 0 | ||
299 | 776 429 6 7 1 0 | ||
300 | 671 294 5 7 1 0 | ||
301 | 579 617 8 10 1 0 | ||
302 | 980 326 5 7 1 0 | ||
303 | 480 382 6 7 1 0 | ||
304 | 668 196 3 2 1 0 | ||
305 | 469 652 8 10 1 0 | ||
306 | 964 402 6 7 1 0 | ||
307 | 383 330 6 7 1 0 | ||
308 | 770 286 5 7 1 0 | ||
309 | 894 436 6 7 1 0 | ||
310 | 116 571 8 10 1 0 | ||
311 | 914 300 5 7 1 0 | ||
312 | 542 271 5 7 1 0 | ||
313 | 354 298 5 7 1 0 | ||
314 | 842 451 6 7 1 0 | ||
315 | 126 646 8 10 1 0 | ||
316 | 542 201 5 7 1 0 | ||
317 | 931 553 8 10 1 0 | ||
318 | 714 446 6 7 1 0 | ||
319 | 872 386 6 7 1 0 | ||
320 | 766 297 5 7 1 0 | ||
321 | 380 264 5 7 1 0 | ||
322 | 973 602 8 10 2 0 | ||
323 | 913 319 6 7 1 0 | ||
324 | 474 473 6 7 1 0 | ||
325 | 789 474 6 7 1 0 | ||
326 | 754 368 6 7 1 0 | ||
327 | 741 338 6 7 1 0 | ||
328 | 768 275 5 7 1 0 | ||
329 | 382 456 6 7 1 0 | ||
330 | 43 675 8 10 1 0 | ||
331 | 318 379 6 7 1 0 | ||
332 | 710 313 5 7 1 0 | ||
333 | 500 200 5 7 1 0 | ||
334 | 348 382 6 7 1 0 | ||
335 | 449 267 5 7 1 0 | ||
336 | 594 576 8 10 1 0 | ||
337 | 55 582 8 10 1 0 | ||
338 | 488 518 8 10 1 0 | ||
339 | 415 641 8 10 1 0 | ||
340 | 424 622 8 10 1 0 | ||
341 | 515 690 8 10 1 0 | ||
342 | 851 419 6 7 1 0 | ||
343 | 567 457 6 7 1 0 | ||
344 | 893 596 8 10 1 0 | ||
345 | 382 543 8 10 1 0 | ||
346 | 321 516 8 10 1 0 | ||
347 | 274 658 8 10 1 0 | ||
348 | 329 352 6 7 1 0 | ||
349 | 382 506 8 10 1 0 | ||
350 | 529 404 6 7 1 0 | ||
351 | 978 718 8 10 1 0 | ||
352 | 267 462 6 7 1 0 | ||
353 | 676 267 5 7 1 0 | ||
354 | 429 417 6 7 1 0 | ||
355 | 527 197 3 2 1 0 | ||
356 | 734 340 6 7 1 0 | ||
357 | 849 379 6 7 1 0 | ||
358 | 274 640 8 10 1 0 | ||
359 | 172 500 8 10 1 0 | ||
360 | 321 387 6 7 1 0 | ||
361 | 406 375 6 7 1 0 | ||
362 | 527 279 5 7 1 0 | ||
363 | 445 392 6 7 1 0 | ||
364 | 873 606 8 10 1 0 | ||
365 | 887 304 5 7 1 0 | ||
366 | 921 299 5 7 1 0 | ||
367 | 823 704 8 10 2 0 | ||
368 | 931 602 8 10 1 0 | ||
369 | 126 683 8 10 1 0 | ||
370 | 595 512 8 10 1 0 | ||
371 | 699 315 6 7 1 0 | ||
372 | 928 441 6 7 1 0 | ||
373 | 814 306 5 7 1 0 | ||
374 | 564 393 6 7 1 0 | ||
375 | 560 550 8 10 1 0 | ||
376 | 558 683 8 10 1 0 | ||
377 | 888 472 6 7 1 0 | ||
378 | 209 635 8 10 1 0 | ||
379 | 340 375 6 7 1 0 | ||
380 | 872 363 6 7 1 0 | ||
381 | 541 317 6 7 1 0 | ||
382 | 199 409 6 7 1 0 | ||
383 | 698 192 3 2 1 0 | ||
384 | 936 414 6 7 1 0 | ||
385 | 614 271 5 7 1 0 | ||
386 | 536 196 3 2 1 0 | ||
387 | 458 691 8 10 1 0 | ||
388 | 586 385 6 7 1 0 | ||
389 | 898 296 5 7 1 0 | ||
390 | 117 638 8 10 1 0 | ||
391 | 707 398 6 7 1 0 | ||
392 | 639 333 6 7 1 0 | ||
393 | 327 284 5 7 1 0 | ||
394 | 846 299 5 7 1 0 | ||
395 | 856 378 6 7 1 0 | ||
396 | 856 321 6 7 1 0 | ||
397 | 890 321 6 7 1 0 | ||
398 | 915 350 6 7 1 0 | ||
399 | 31 582 8 10 1 0 | ||
400 | 637 385 6 7 1 0 | ||
401 | 506 367 6 7 1 0 | ||
402 | 668 711 8 10 1 0 | ||
403 | 519 352 6 7 1 0 | ||
404 | 555 482 6 7 1 0 | ||
405 | 549 574 8 10 1 0 | ||
406 | 272 470 6 7 1 0 | ||
407 | 327 271 5 7 1 0 | ||
408 | 521 328 6 7 1 0 | ||
409 | 730 278 5 7 1 0 | ||
410 | 569 366 6 7 1 0 | ||
411 | 844 353 6 7 1 0 | ||
412 | 982 646 8 10 2 0 | ||
413 | 236 518 8 10 1 0 | ||
414 | 780 403 6 7 1 0 | ||
415 | 559 199 5 7 1 0 | ||
416 | 802 736 8 10 1 0 | ||
417 | 435 382 6 7 1 0 | ||
418 | 905 312 5 7 1 0 | ||
419 | 304 700 8 10 1 0 | ||
420 | 921 382 6 7 1 0 | ||
421 | 420 267 5 7 1 0 | ||
422 | 551 715 8 10 1 0 | ||
423 | 376 579 8 10 1 0 | ||
424 | 129 563 8 10 1 0 | ||
425 | 792 284 5 7 1 0 | ||
426 | 347 646 8 10 1 0 | ||
427 | 747 195 3 2 1 0 | ||
428 | 694 598 8 10 1 0 | ||
429 | 797 542 8 10 1 0 | ||
430 | 634 201 5 7 1 0 | ||
431 | 604 307 5 7 1 0 | ||
432 | 850 278 5 7 1 0 | ||
433 | 766 512 8 10 1 0 | ||
434 | 412 618 8 10 1 0 | ||
435 | 325 339 6 7 1 0 | ||
436 | 259 403 6 7 1 0 | ||
437 | 194 540 8 10 1 0 | ||
438 | 340 388 6 7 1 0 | ||
439 | 699 296 5 7 1 0 | ||
440 | 876 346 6 7 1 0 | ||
441 | 708 269 5 7 1 0 | ||
442 | 626 291 5 7 1 0 | ||
443 | 790 315 6 7 1 0 | ||
444 | 731 573 8 10 1 0 | ||
445 | 366 265 5 7 1 0 | ||
446 | 557 266 5 7 1 0 | ||
447 | 506 271 5 7 1 0 | ||
448 | 900 630 8 10 1 0 | ||
449 | 534 382 6 7 1 0 | ||
450 | 240 457 6 7 1 0 | ||
451 | 441 284 5 7 1 0 | ||
452 | 918 327 6 7 1 0 | ||
453 | 726 270 5 7 1 0 | ||
454 | 797 636 8 10 1 0 | ||
455 | 261 581 8 10 1 0 | ||
456 | 909 316 6 7 1 0 | ||
457 | 246 640 8 10 1 0 | ||
458 | 159 527 8 10 1 0 | ||
459 | 760 388 6 7 1 0 | ||
460 | 60 579 8 10 1 0 | ||
461 | 993 704 8 10 1 0 | ||
462 | 764 325 6 7 1 0 | ||
463 | 387 469 6 7 1 0 | ||
464 | 287 692 8 10 1 0 | ||
465 | 856 413 6 7 1 0 | ||
466 | 471 394 6 7 1 0 | ||
467 | 85 646 8 10 1 0 | ||
468 | 650 366 6 7 1 0 | ||
469 | 564 621 8 10 1 0 | ||
470 | 737 322 6 7 1 0 | ||
471 | 427 554 8 10 1 0 | ||
472 | 458 656 8 10 1 0 | ||
473 | 404 343 6 7 1 0 | ||
474 | 374 307 5 7 1 0 | ||
475 | 838 346 6 7 1 0 | ||
476 | 398 377 6 7 1 0 | ||
477 | 634 354 6 7 1 0 | ||
478 | 595 190 3 2 1 0 | ||
479 | 197 650 8 10 1 0 | ||
480 | 210 684 8 10 1 0 | ||
481 | 290 457 6 7 1 0 | ||
482 | 709 306 5 7 1 0 | ||
483 | 718 279 5 7 1 0 | ||
484 | 716 309 5 7 1 0 | ||
485 | 898 390 6 7 1 0 | ||
486 | 587 658 8 10 1 0 | ||
487 | 474 433 6 7 1 0 | ||
488 | 898 362 6 7 1 0 | ||
489 | 577 402 6 7 1 0 | ||
490 | 400 323 6 7 1 0 | ||
491 | 553 264 5 7 1 0 | ||
492 | 606 529 8 10 1 0 | ||
493 | 939 728 8 10 1 0 | ||
494 | 891 407 6 7 1 0 | ||
495 | 407 397 6 7 1 0 | ||
496 | 725 369 6 7 1 0 | ||
497 | 369 270 5 7 1 0 | ||
498 | 500 425 6 7 1 0 | ||
499 | 444 599 8 10 1 0 | ||
500 | 261 273 5 7 1 0 | ||
501 | 329 294 5 7 1 0 | ||
502 | 352 653 8 10 1 0 | ||
503 | 387 288 5 7 1 0 | ||
504 | 722 684 8 10 1 0 | ||
505 | 187 714 8 10 1 0 | ||
506 | 565 445 6 7 1 0 | ||
507 | 510 412 6 7 1 0 | ||
508 | 762 347 6 7 1 0 | ||
509 | 520 271 5 7 1 0 | ||
510 | 387 264 5 7 1 0 | ||
511 | 408 281 5 7 1 0 | ||
512 | 262 561 8 10 1 0 | ||
513 | 685 284 5 7 1 0 | ||
514 | 878 615 8 10 1 0 | ||
515 | 831 327 6 7 1 0 | ||
516 | 52 270 5 7 1 0 | ||
517 | 719 585 8 10 1 0 | ||
518 | 782 302 5 7 1 0 | ||
519 | 283 632 8 10 1 0 | ||
520 | 930 319 6 7 1 0 | ||
521 | 317 484 7 8 1 0 | ||
522 | 961 634 8 10 1 0 | ||
523 | 176 408 6 7 1 0 | ||
524 | 639 326 6 7 1 0 | ||
525 | 682 299 5 7 1 0 | ||
526 | 769 337 6 7 1 0 | ||
527 | 29 331 5 7 1 0 | ||
528 | 906 264 5 7 1 0 | ||
529 | 843 278 5 7 1 0 | ||
530 | 308 340 6 7 1 0 | ||
531 | 714 193 3 2 1 0 | ||
532 | 869 459 6 7 1 0 | ||
533 | 589 192 3 2 1 0 | ||
534 | 994 412 6 7 1 0 | ||
535 | 723 350 6 7 1 0 | ||
536 | 284 293 5 7 1 0 | ||
537 | 35 686 8 10 1 0 | ||
538 | 981 340 6 7 1 0 | ||
539 | 676 614 8 10 1 0 | ||
540 | 379 276 5 7 1 0 | ||
541 | 334 422 6 7 1 0 | ||
542 | 899 509 8 10 1 0 | ||
543 | 340 313 5 7 1 0 | ||
544 | 724 194 3 2 1 0 | ||
545 | 782 440 6 7 1 0 | ||
546 | 349 284 5 7 1 0 | ||
547 | 523 348 6 7 1 0 | ||
548 | 599 275 5 7 1 0 | ||
549 | 588 279 5 7 1 0 | ||
550 | 436 688 8 10 1 0 | ||
551 | 494 551 8 10 1 0 | ||
552 | 326 307 5 7 1 0 | ||
553 | 624 508 8 10 1 0 | ||
554 | 450 416 6 7 1 0 | ||
555 | 546 279 5 7 1 0 | ||
556 | 690 286 5 7 1 0 | ||
557 | 980 375 6 7 1 0 | ||
558 | 937 590 8 10 1 0 | ||
559 | 551 745 8 10 1 0 | ||
560 | 281 453 6 7 1 0 | ||
561 | 916 288 5 7 1 0 | ||
562 | 432 297 5 7 1 0 | ||
563 | 272 524 8 10 1 0 | ||
564 | 293 519 8 10 1 0 | ||
565 | 364 616 8 10 1 0 | ||
566 | 292 273 5 7 1 0 | ||
567 | 990 626 8 10 2 0 | ||
568 | 640 314 5 7 1 0 | ||
569 | 732 197 3 2 1 0 | ||
570 | 741 344 6 7 1 0 | ||
571 | 77 580 8 10 1 0 | ||
572 | 457 375 6 7 1 0 | ||
573 | 720 195 3 2 1 0 | ||
574 | 390 358 6 7 1 0 | ||
575 | 193 564 8 10 1 0 | ||
576 | 747 339 6 7 1 0 | ||
577 | 908 564 8 10 1 0 | ||
578 | 285 565 8 10 1 0 | ||
579 | 153 684 8 10 1 0 | ||
580 | 488 701 8 10 1 0 | ||
581 | 335 267 5 7 1 0 | ||
582 | 393 394 6 7 1 0 | ||
583 | 392 285 5 7 1 0 | ||
584 | 378 388 6 7 1 0 | ||
585 | 865 356 6 7 1 0 | ||
586 | 73 311 5 7 1 0 | ||
587 | 548 270 5 7 1 0 | ||
588 | 89 662 8 10 1 0 | ||
589 | 438 428 6 7 1 0 | ||
590 | 693 330 6 7 1 0 | ||
591 | 937 661 8 10 1 0 | ||
592 | 518 748 8 10 1 0 | ||
593 | 941 344 6 7 1 0 | ||
594 | 17 382 5 7 1 0 | ||
595 | 879 725 8 10 1 0 | ||
596 | 386 657 8 10 1 0 | ||
597 | 319 324 6 7 1 0 | ||
598 | 426 281 5 7 1 0 | ||
599 | 476 384 6 7 1 0 | ||
600 | 18 606 8 10 1 0 | ||
601 | 444 197 3 2 1 0 | ||
602 | 604 287 5 7 1 0 | ||
603 | 359 475 6 7 1 0 | ||
604 | 315 565 8 10 1 0 | ||
605 | 932 432 6 7 1 0 | ||
606 | 165 532 8 10 1 0 | ||
607 | 941 678 8 10 1 0 | ||
608 | 337 749 8 10 1 0 | ||
609 | 504 603 8 10 1 0 | ||
610 | 146 476 6 7 1 0 | ||
611 | 882 401 6 7 1 0 | ||
612 | 811 704 8 10 1 0 | ||
613 | 339 406 6 7 1 0 | ||
614 | 35 229 5 7 1 0 | ||
615 | 780 537 8 10 1 0 | ||
616 | 278 408 6 7 1 0 | ||
617 | 976 401 6 7 1 0 | ||
618 | 395 276 5 7 1 0 | ||
619 | 771 315 6 7 1 0 | ||
620 | 557 459 6 7 1 0 | ||
621 | 534 283 5 7 1 0 | ||
622 | 742 202 5 7 1 0 | ||
623 | 836 722 8 10 1 0 | ||
624 | 726 334 6 7 1 0 | ||
625 | 683 273 5 7 1 0 | ||
626 | 752 394 6 7 1 0 | ||
627 | 435 699 8 10 1 0 | ||
628 | 752 313 5 7 1 0 | ||
629 | 747 418 6 7 1 0 | ||
630 | 453 503 8 10 1 0 | ||
631 | 865 289 5 7 1 0 | ||
632 | 335 308 5 7 1 0 | ||
633 | 323 376 6 7 1 0 | ||
634 | 401 191 3 3 1 0 | ||
635 | 290 312 5 7 1 0 | ||
636 | 580 193 3 2 1 0 | ||
637 | 334 483 6 7 1 0 | ||
638 | 413 353 6 7 1 0 | ||
639 | 742 362 6 7 1 0 | ||
640 | 103 611 8 10 1 0 | ||
641 | 727 197 3 2 1 0 | ||
642 | 490 347 6 7 1 0 | ||
643 | 516 299 5 7 1 0 | ||
644 | 725 310 5 7 1 0 | ||
645 | 569 554 8 10 1 0 | ||
646 | 786 526 8 10 1 0 | ||
647 | 915 718 8 10 1 0 | ||
648 | 348 393 6 7 1 0 | ||
649 | 866 360 6 7 1 0 | ||
650 | 687 271 5 7 1 0 | ||
651 | 581 748 8 10 1 0 | ||
652 | 34 416 6 7 1 0 | ||
653 | 331 308 5 7 1 0 | ||
654 | 654 532 8 10 1 0 | ||
655 | 414 383 6 7 1 0 | ||
656 | 724 323 6 7 1 0 | ||
657 | 306 326 6 7 1 0 | ||
658 | 761 286 5 7 1 0 | ||
659 | 465 417 6 7 1 0 | ||
660 | 65 675 8 10 1 0 | ||
661 | 566 338 6 7 1 0 | ||
662 | 748 541 8 10 1 0 | ||
663 | 745 316 6 7 1 0 | ||
664 | 411 317 6 7 1 0 | ||
665 | 546 549 8 10 1 0 | ||
666 | 305 314 5 7 1 0 | ||
667 | 935 336 6 7 1 0 | ||
668 | 749 276 5 7 1 0 | ||
669 | 123 589 8 10 1 0 | ||
670 | 675 294 5 7 1 0 | ||
671 | 641 294 5 7 1 0 | ||
672 | 823 526 8 10 1 0 | ||
673 | 679 336 6 7 1 0 | ||
674 | 506 449 6 7 1 0 | ||
675 | 302 625 8 10 1 0 | ||
676 | 708 279 5 7 1 0 | ||
677 | 583 695 8 10 1 0 | ||
678 | 550 287 5 7 1 0 | ||
679 | 371 382 6 7 1 0 | ||
680 | 540 403 6 7 1 0 | ||
681 | 345 267 5 7 1 0 | ||
682 | 422 409 6 7 1 0 | ||
683 | 765 539 8 10 1 0 | ||
684 | 973 618 8 10 2 0 | ||
685 | 263 629 8 10 1 0 | ||
686 | 348 359 6 7 1 0 | ||
687 | 676 583 8 10 1 0 | ||
688 | 475 672 8 10 1 0 | ||
689 | 1 420 5 7 1 0 | ||
690 | 816 454 6 7 1 0 | ||
691 | 685 349 6 7 1 0 | ||
692 | 401 477 6 7 1 0 | ||
693 | 20 648 8 10 1 0 | ||
694 | 552 338 6 7 1 0 | ||
695 | 246 440 6 7 1 0 | ||
696 | 401 290 5 7 1 0 | ||
697 | 639 275 5 7 1 0 | ||
698 | 209 570 8 10 1 0 | ||
699 | 875 432 6 7 1 0 | ||
700 | 25 705 8 10 1 0 | ||
701 | 708 195 3 2 1 0 | ||
702 | 450 319 6 7 1 0 | ||
703 | 423 587 8 10 1 0 | ||
704 | 729 385 6 7 1 0 | ||
705 | 230 558 8 10 1 0 | ||
706 | 921 308 5 7 1 0 | ||
707 | 415 197 3 2 1 0 | ||
708 | 314 476 6 7 1 0 | ||
709 | 127 548 8 10 1 0 | ||
710 | 394 484 6 7 1 0 | ||
711 | 676 194 3 2 1 0 | ||
712 | 333 684 8 10 1 0 | ||
713 | 4 391 5 7 1 0 | ||
714 | 44 224 5 7 1 0 | ||
715 | 480 446 6 7 1 0 | ||
716 | 734 291 5 7 1 0 | ||
717 | 418 385 6 7 1 0 | ||
718 | 473 200 5 7 1 0 | ||
719 | 574 534 8 10 1 0 | ||
720 | 549 300 5 7 1 0 | ||
721 | 981 720 8 10 1 0 | ||
722 | 226 537 8 10 1 0 | ||
723 | 240 589 8 10 1 0 | ||
724 | 592 290 5 7 1 0 | ||
725 | 352 325 6 7 1 0 | ||
726 | 347 577 8 10 1 0 | ||
727 | 676 277 5 7 1 0 | ||
728 | 715 297 5 7 1 0 | ||
729 | 979 414 6 7 1 0 | ||
730 | 722 291 5 7 1 0 | ||
731 | 357 377 6 7 1 0 | ||
732 | 502 549 8 10 1 0 | ||
733 | 975 619 8 10 2 0 | ||
734 | 391 308 5 7 1 0 | ||
735 | 720 217 5 7 1 0 | ||
736 | 755 590 8 10 1 0 | ||
737 | 897 328 6 7 1 0 | ||
738 | 26 302 5 7 1 0 | ||
739 | 784 374 6 7 1 0 | ||
740 | 805 430 6 7 1 0 | ||
741 | 455 279 5 7 1 0 | ||
742 | 477 421 6 7 1 0 | ||
743 | 125 693 8 10 1 0 | ||
744 | 693 353 6 7 1 0 | ||
745 | 358 276 5 7 1 0 | ||
746 | 794 379 6 7 1 0 | ||
747 | 520 291 5 7 1 0 | ||
748 | 401 382 6 7 1 0 | ||
749 | 85 571 8 10 1 0 | ||
750 | 369 693 8 10 1 0 | ||
751 | 584 192 3 2 1 0 | ||
752 | 933 369 6 7 1 0 | ||
753 | 740 271 5 7 1 0 | ||
754 | 681 410 6 7 1 0 | ||
755 | 759 284 5 7 1 0 | ||
756 | 538 599 8 10 1 0 | ||
757 | 526 287 5 7 1 0 | ||
758 | 742 196 3 2 1 0 | ||
759 | 398 266 5 7 1 0 | ||
760 | 771 587 8 10 1 0 | ||
761 | 714 337 6 7 1 0 | ||
762 | 571 597 8 10 1 0 | ||
763 | 687 318 6 7 1 0 | ||
764 | 866 273 5 7 1 0 | ||
765 | 473 558 8 10 1 0 | ||
766 | 419 524 8 10 1 0 | ||
767 | 204 685 8 10 1 0 | ||
768 | 700 265 5 7 1 0 | ||
769 | 156 654 8 10 1 0 | ||
770 | 340 361 6 7 1 0 | ||
771 | 645 336 6 7 1 0 | ||
772 | 367 653 8 10 1 0 | ||
773 | 433 318 6 7 1 0 | ||
774 | 248 561 8 10 1 0 | ||
775 | 493 200 5 7 1 0 | ||
776 | 111 683 8 10 1 0 | ||
777 | 406 542 8 10 1 0 | ||
778 | 975 681 8 10 2 0 | ||
779 | 612 284 5 7 1 0 | ||
780 | 631 193 3 2 1 0 | ||
781 | 598 631 8 10 1 0 | ||
782 | 445 281 5 7 1 0 | ||
783 | 54 677 8 10 1 0 | ||
784 | 124 575 8 10 1 0 | ||
785 | 594 286 5 7 1 0 | ||
786 | 780 313 5 7 1 0 | ||
787 | 65 560 8 10 1 0 | ||
788 | 833 366 6 7 1 0 | ||
789 | 901 609 8 10 1 0 | ||
790 | 544 298 5 7 1 0 | ||
791 | 852 301 5 7 1 0 | ||
792 | 44 617 8 10 1 0 | ||
793 | 418 396 6 7 1 0 | ||
794 | 900 330 6 7 1 0 | ||
795 | 350 310 5 7 1 0 | ||
796 | 509 286 5 7 1 0 | ||
797 | 253 551 8 10 1 0 | ||
798 | 579 199 5 7 1 0 | ||
799 | 829 401 6 7 1 0 | ||
800 | 553 269 5 7 1 0 | ||
801 | 571 510 8 10 1 0 | ||
802 | 962 538 8 10 1 0 | ||
803 | 337 399 6 7 1 0 | ||
804 | 445 270 5 7 1 0 |
File playground/jhucrowd_label.ipynb added (mode: 100644) (index 0000000..5ad7071) | |||
1 | { | ||
2 | "cells": [ | ||
3 | { | ||
4 | "cell_type": "code", | ||
5 | "execution_count": 2, | ||
6 | "metadata": {}, | ||
7 | "outputs": [], | ||
8 | "source": [ | ||
9 | "path = \"0003.txt\"" | ||
10 | ] | ||
11 | }, | ||
12 | { | ||
13 | "cell_type": "code", | ||
14 | "execution_count": 1, | ||
15 | "metadata": {}, | ||
16 | "outputs": [ | ||
17 | { | ||
18 | "name": "stdout", | ||
19 | "output_type": "stream", | ||
20 | "text": [ | ||
21 | "0003.txt\t jhucrowd_label.ipynb p_if_deformable_bug.py\r\n", | ||
22 | "ccnnv2_playground.py p_batch.py\t play_load_perspective_map.py\r\n", | ||
23 | "__init__.py\t p_can_adcrowdnet.py\r\n" | ||
24 | ] | ||
25 | } | ||
26 | ], | ||
27 | "source": [ | ||
28 | "!ls" | ||
29 | ] | ||
30 | }, | ||
31 | { | ||
32 | "cell_type": "code", | ||
33 | "execution_count": 3, | ||
34 | "metadata": {}, | ||
35 | "outputs": [], | ||
36 | "source": [ | ||
37 | "import pandas as pd" | ||
38 | ] | ||
39 | }, | ||
40 | { | ||
41 | "cell_type": "code", | ||
42 | "execution_count": 7, | ||
43 | "metadata": {}, | ||
44 | "outputs": [], | ||
45 | "source": [ | ||
46 | "df = pd.read_csv(path, sep=\" \", header=None)" | ||
47 | ] | ||
48 | }, | ||
49 | { | ||
50 | "cell_type": "code", | ||
51 | "execution_count": 9, | ||
52 | "metadata": {}, | ||
53 | "outputs": [ | ||
54 | { | ||
55 | "data": { | ||
56 | "text/html": [ | ||
57 | "<div>\n", | ||
58 | "<style scoped>\n", | ||
59 | " .dataframe tbody tr th:only-of-type {\n", | ||
60 | " vertical-align: middle;\n", | ||
61 | " }\n", | ||
62 | "\n", | ||
63 | " .dataframe tbody tr th {\n", | ||
64 | " vertical-align: top;\n", | ||
65 | " }\n", | ||
66 | "\n", | ||
67 | " .dataframe thead th {\n", | ||
68 | " text-align: right;\n", | ||
69 | " }\n", | ||
70 | "</style>\n", | ||
71 | "<table border=\"1\" class=\"dataframe\">\n", | ||
72 | " <thead>\n", | ||
73 | " <tr style=\"text-align: right;\">\n", | ||
74 | " <th></th>\n", | ||
75 | " <th>0</th>\n", | ||
76 | " <th>1</th>\n", | ||
77 | " <th>2</th>\n", | ||
78 | " <th>3</th>\n", | ||
79 | " <th>4</th>\n", | ||
80 | " <th>5</th>\n", | ||
81 | " </tr>\n", | ||
82 | " </thead>\n", | ||
83 | " <tbody>\n", | ||
84 | " <tr>\n", | ||
85 | " <th>0</th>\n", | ||
86 | " <td>499</td>\n", | ||
87 | " <td>347</td>\n", | ||
88 | " <td>6</td>\n", | ||
89 | " <td>7</td>\n", | ||
90 | " <td>1</td>\n", | ||
91 | " <td>0</td>\n", | ||
92 | " </tr>\n", | ||
93 | " <tr>\n", | ||
94 | " <th>1</th>\n", | ||
95 | " <td>143</td>\n", | ||
96 | " <td>640</td>\n", | ||
97 | " <td>8</td>\n", | ||
98 | " <td>10</td>\n", | ||
99 | " <td>1</td>\n", | ||
100 | " <td>0</td>\n", | ||
101 | " </tr>\n", | ||
102 | " <tr>\n", | ||
103 | " <th>2</th>\n", | ||
104 | " <td>539</td>\n", | ||
105 | " <td>649</td>\n", | ||
106 | " <td>8</td>\n", | ||
107 | " <td>10</td>\n", | ||
108 | " <td>1</td>\n", | ||
109 | " <td>0</td>\n", | ||
110 | " </tr>\n", | ||
111 | " <tr>\n", | ||
112 | " <th>3</th>\n", | ||
113 | " <td>301</td>\n", | ||
114 | " <td>385</td>\n", | ||
115 | " <td>6</td>\n", | ||
116 | " <td>7</td>\n", | ||
117 | " <td>1</td>\n", | ||
118 | " <td>0</td>\n", | ||
119 | " </tr>\n", | ||
120 | " <tr>\n", | ||
121 | " <th>4</th>\n", | ||
122 | " <td>553</td>\n", | ||
123 | " <td>395</td>\n", | ||
124 | " <td>6</td>\n", | ||
125 | " <td>7</td>\n", | ||
126 | " <td>1</td>\n", | ||
127 | " <td>0</td>\n", | ||
128 | " </tr>\n", | ||
129 | " </tbody>\n", | ||
130 | "</table>\n", | ||
131 | "</div>" | ||
132 | ], | ||
133 | "text/plain": [ | ||
134 | " 0 1 2 3 4 5\n", | ||
135 | "0 499 347 6 7 1 0\n", | ||
136 | "1 143 640 8 10 1 0\n", | ||
137 | "2 539 649 8 10 1 0\n", | ||
138 | "3 301 385 6 7 1 0\n", | ||
139 | "4 553 395 6 7 1 0" | ||
140 | ] | ||
141 | }, | ||
142 | "execution_count": 9, | ||
143 | "metadata": {}, | ||
144 | "output_type": "execute_result" | ||
145 | } | ||
146 | ], | ||
147 | "source": [ | ||
148 | "df.head()" | ||
149 | ] | ||
150 | }, | ||
151 | { | ||
152 | "cell_type": "code", | ||
153 | "execution_count": 11, | ||
154 | "metadata": {}, | ||
155 | "outputs": [], | ||
156 | "source": [ | ||
157 | "p = df.to_numpy()\n" | ||
158 | ] | ||
159 | }, | ||
160 | { | ||
161 | "cell_type": "code", | ||
162 | "execution_count": 12, | ||
163 | "metadata": {}, | ||
164 | "outputs": [ | ||
165 | { | ||
166 | "data": { | ||
167 | "text/plain": [ | ||
168 | "array([[499, 347, 6, 7, 1, 0],\n", | ||
169 | " [143, 640, 8, 10, 1, 0],\n", | ||
170 | " [539, 649, 8, 10, 1, 0],\n", | ||
171 | " ...,\n", | ||
172 | " [962, 538, 8, 10, 1, 0],\n", | ||
173 | " [337, 399, 6, 7, 1, 0],\n", | ||
174 | " [445, 270, 5, 7, 1, 0]])" | ||
175 | ] | ||
176 | }, | ||
177 | "execution_count": 12, | ||
178 | "metadata": {}, | ||
179 | "output_type": "execute_result" | ||
180 | } | ||
181 | ], | ||
182 | "source": [ | ||
183 | "p" | ||
184 | ] | ||
185 | }, | ||
186 | { | ||
187 | "cell_type": "code", | ||
188 | "execution_count": 13, | ||
189 | "metadata": {}, | ||
190 | "outputs": [ | ||
191 | { | ||
192 | "data": { | ||
193 | "text/plain": [ | ||
194 | "347" | ||
195 | ] | ||
196 | }, | ||
197 | "execution_count": 13, | ||
198 | "metadata": {}, | ||
199 | "output_type": "execute_result" | ||
200 | } | ||
201 | ], | ||
202 | "source": [ | ||
203 | "p[0,1]" | ||
204 | ] | ||
205 | }, | ||
206 | { | ||
207 | "cell_type": "code", | ||
208 | "execution_count": 14, | ||
209 | "metadata": {}, | ||
210 | "outputs": [ | ||
211 | { | ||
212 | "data": { | ||
213 | "text/plain": [ | ||
214 | "347" | ||
215 | ] | ||
216 | }, | ||
217 | "execution_count": 14, | ||
218 | "metadata": {}, | ||
219 | "output_type": "execute_result" | ||
220 | } | ||
221 | ], | ||
222 | "source": [ | ||
223 | "p[0][1]" | ||
224 | ] | ||
225 | }, | ||
226 | { | ||
227 | "cell_type": "code", | ||
228 | "execution_count": null, | ||
229 | "metadata": {}, | ||
230 | "outputs": [], | ||
231 | "source": [] | ||
232 | } | ||
233 | ], | ||
234 | "metadata": { | ||
235 | "kernelspec": { | ||
236 | "display_name": "Python 3", | ||
237 | "language": "python", | ||
238 | "name": "python3" | ||
239 | }, | ||
240 | "language_info": { | ||
241 | "codemirror_mode": { | ||
242 | "name": "ipython", | ||
243 | "version": 3 | ||
244 | }, | ||
245 | "file_extension": ".py", | ||
246 | "mimetype": "text/x-python", | ||
247 | "name": "python", | ||
248 | "nbconvert_exporter": "python", | ||
249 | "pygments_lexer": "ipython3", | ||
250 | "version": "3.8.1" | ||
251 | } | ||
252 | }, | ||
253 | "nbformat": 4, | ||
254 | "nbformat_minor": 4 | ||
255 | } |