{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "path = \"0003.txt\"" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0003.txt\t jhucrowd_label.ipynb p_if_deformable_bug.py\r\n", "ccnnv2_playground.py p_batch.py\t play_load_perspective_map.py\r\n", "__init__.py\t p_can_adcrowdnet.py\r\n" ] } ], "source": [ "!ls" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "df = pd.read_csv(path, sep=\" \", header=None)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>0</th>\n", " <th>1</th>\n", " <th>2</th>\n", " <th>3</th>\n", " <th>4</th>\n", " <th>5</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>499</td>\n", " <td>347</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>143</td>\n", " <td>640</td>\n", " <td>8</td>\n", " <td>10</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>539</td>\n", " <td>649</td>\n", " <td>8</td>\n", " <td>10</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>301</td>\n", " <td>385</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>553</td>\n", " <td>395</td>\n", " <td>6</td>\n", " <td>7</td>\n", " <td>1</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " 0 1 2 3 4 5\n", "0 499 347 6 7 1 0\n", "1 143 640 8 10 1 0\n", "2 539 649 8 10 1 0\n", "3 301 385 6 7 1 0\n", "4 553 395 6 7 1 0" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "p = df.to_numpy()\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[499, 347, 6, 7, 1, 0],\n", " [143, 640, 8, 10, 1, 0],\n", " [539, 649, 8, 10, 1, 0],\n", " ...,\n", " [962, 538, 8, 10, 1, 0],\n", " [337, 399, 6, 7, 1, 0],\n", " [445, 270, 5, 7, 1, 0]])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "347" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p[0,1]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "347" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "p[0][1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.1" } }, "nbformat": 4, "nbformat_minor": 4 }
Mode | Type | Size | Ref | File |
---|---|---|---|---|
100644 | blob | 112 | 54a0bfa5d13ea1dd49622ed3704ad36f6cd68749 | .gitignore |
100644 | blob | 1342 | f2eb3073ff4a8536cf4e8104ff942b525e3c7f34 | .travis.yml |
100644 | blob | 1421 | 47329ff240adaff4873aa6fcd6eefedd9c42f1b9 | README.md |
100644 | blob | 9341 | 8cc5412318c694da65e0bbdf2d62baf7c871c49e | args_util.py |
040000 | tree | - | 5e9d7f0e1fd3a9e4d5a37f3d6de0c3ecd3125af8 | backup_notebook |
040000 | tree | - | 55d1d196f5b6ed4bfc1e8a715df1cfff1dd18117 | bug |
100644 | blob | 9374 | 8fee5ea4b4f8494fa40fa68ea46902b7adb5d585 | crowd_counting_error_metrics.py |
100644 | blob | 70098 | 74ec54c7c874ef106a9d1c0499cf9c372718aac5 | data_flow.py |
040000 | tree | - | 7b2560d2cb223bf0574eb278bafeda5a8577c7db | data_util |
040000 | tree | - | b66e8badfd190582171a4d2cc854a5810971f56c | dataset_script |
040000 | tree | - | 0e274a373a75486d021c18ca275f5b67cbc3158f | debug |
040000 | tree | - | 74e02cec26c0d98f846ab7ab573419265856500b | demo |
040000 | tree | - | 13debfeebc3df105633887f857e8b709318cf661 | demo_app |
040000 | tree | - | 9862b9cbc6e7a1d43565f12d85d9b17d1bf1814e | env_file |
100644 | blob | 4460 | 9b254c348a3453f4df2c3ccbf21fb175a16852de | eval_context_aware_network.py |
100644 | blob | 428 | 35cc7bfe48a4ed8dc56635fd3a6763612d8af771 | evaluator.py |
100644 | blob | 18278 | 10aac007cb3474b78a892861470001a3010b0d0b | experiment_main.py |
100644 | blob | 8876 | 049432d6bde50245a4acba4e116d59605b5b6315 | experiment_meow_main.py |
100644 | blob | 1916 | 1d228fa4fa2887927db069f0c93c61a920279d1f | explore_model_summary.py |
100644 | blob | 2718 | b09b84e8b761137654ba6904669799c4866554b3 | hard_code_variable.py |
040000 | tree | - | b3aa858a157f5e1e22c00fdb6f9dd071f4c6c163 | local_train_script |
040000 | tree | - | 927d159228536a86499de8a294700f8599b8a60b | logs |
100644 | blob | 15300 | cb90faba0bd4a45f2606a1e60975ed05bfacdb07 | main_pacnn.py |
100644 | blob | 2760 | 3c2d5ba1c81ef2770ad216c566e268f4ece17262 | main_shanghaitech.py |
100644 | blob | 2683 | 29189260c1a2c03c8e59cd0b4bd61df19d5ce098 | main_ucfcc50.py |
100644 | blob | 2794 | f37b3bb572c53dd942c51243bd5b0853228c6ddb | model_util.py |
040000 | tree | - | 3ae76ede817d90ddfa6fe982440dfbbe193974a2 | models |
100644 | blob | 870 | 8f5ce4f7e0b168add5ff2a363faa973a5b56ca48 | mse_l1_loss.py |
100644 | blob | 1066 | 811554259182e63240d7aa9406f315377b3be1ac | mse_ssim_loss.py |
040000 | tree | - | fff511bacd79e9ea5f3eb4f42a135aaf148be23d | notebook |
040000 | tree | - | 33dcd308a059b5bd1079bb1394127d77b67bfc9e | playground |
040000 | tree | - | 072abdcb8a8ad064d60f8dc7daf480cf48b3ad06 | predict |
040000 | tree | - | 73344ba1943f7b57b00af75407cc47aff085ae72 | predict_script |
040000 | tree | - | c7c295e9e418154ae7c754dc888a77df8f50aa61 | pytorch_ssim |
100644 | blob | 1727 | 1cd14cbff636cb6145c8bacf013e97eb3f7ed578 | sanity_check_dataloader.py |
040000 | tree | - | a1e8ea43eba8a949288a00fff12974aec8692003 | saved_model_best |
100644 | blob | 3525 | 27067234ad3deddd743dcab0d7b3ba4812902656 | train_attn_can_adcrowdnet.py |
100644 | blob | 3488 | e47bfc7e91c46ca3c61be0c5258302de4730b06d | train_attn_can_adcrowdnet_freeze_vgg.py |
100644 | blob | 5352 | 3ee3269d6fcc7408901af46bed52b1d86ee9818c | train_attn_can_adcrowdnet_simple.py |
100644 | blob | 5728 | 90b846b68f15bdc58e3fd60b41aa4b5d82864ec4 | train_attn_can_adcrowdnet_simple_lrscheduler.py |
100644 | blob | 9081 | 664051f8838434c386e34e6dd6e6bca862cb3ccd | train_compact_cnn.py |
100644 | blob | 5702 | fdec7cd1ee062aa4a2182a91e2fb1bd0db3ab35f | train_compact_cnn_lrscheduler.py |
100644 | blob | 5611 | 2a241c876015db34681d73ce534221de482b0b90 | train_compact_cnn_sgd.py |
100644 | blob | 3525 | eb52f7a4462687c9b2bf1c3a887014c4afefa26d | train_context_aware_network.py |
100644 | blob | 5651 | 48631e36a1fdc063a6d54d9206d2fd45521d8dc8 | train_custom_compact_cnn.py |
100644 | blob | 5594 | 07d6c9c056db36082545b5b60b1c00d9d9f6396d | train_custom_compact_cnn_lrscheduler.py |
100644 | blob | 5281 | 8a92eb87b54f71ad2a799a7e05020344a22e22d3 | train_custom_compact_cnn_sgd.py |
040000 | tree | - | 1e7ec428d32ae85921ba69ae18ebe12c783c94ee | train_script |
100644 | blob | 6595 | 5b8afd4fb322dd7cbffd1a589ff5276b0e3edeb5 | visualize_data_loader.py |
100644 | blob | 1772 | 449bb484143443c125566907a4b862d1c283c3f3 | visualize_util.py |