"""
contain dummy args with config
helpfull for copy paste Kaggle
"""
import argparse
from hard_code_variable import HardCodeVariable
def make_args(gpu="0", task="task_one_"):
"""
these arg does not have any required commandline arg (all with default value)
:param train_json:
:param test_json:
:param pre:
:param gpu:
:param task:
:return:
"""
parser = argparse.ArgumentParser(description='PyTorch CSRNet')
args = parser.parse_args()
args.gpu = gpu
args.task = task
args.pre = None
return args
class Meow():
def __init__(self):
pass
def make_meow_args(gpu="0", task="task_one_"):
args = Meow()
args.gpu = gpu
args.task = task
args.pre = None
return args
def like_real_args_parse(data_input):
args = Meow()
args.input = data_input
args.original_lr = 1e-7
args.lr = 1e-7
args.batch_size = 1
args.momentum = 0.95
args.decay = 5 * 1e-4
args.start_epoch = 0
args.epochs = 120
args.steps = [-1, 1, 100, 150]
args.scales = [1, 1, 1, 1]
args.workers = 4
args.print_freq = 30
def context_aware_network_args_parse():
"""
this is not dummy
if you are going to make all-in-one notebook, ignore this
:return:
"""
parser = argparse.ArgumentParser(description='CrowdCounting Context Aware Network')
parser.add_argument("--task_id", action="store", default="dev")
parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('--input', action="store", type=str, default=HardCodeVariable().SHANGHAITECH_PATH_PART_A)
parser.add_argument('--output', action="store", type=str, default="saved_model/context_aware_network")
parser.add_argument('--datasetname', action="store", default="shanghaitech_keepfull")
# args with default value
parser.add_argument('--load_model', action="store", default="", type=str)
parser.add_argument('--lr', action="store", default=1e-8, type=float)
parser.add_argument('--momentum', action="store", default=0.9, type=float)
parser.add_argument('--decay', action="store", default=5*1e-3, type=float)
parser.add_argument('--epochs', action="store", default=1, type=int)
parser.add_argument('--test', action="store_true", default=False)
arg = parser.parse_args()
return arg
def my_args_parse():
parser = argparse.ArgumentParser(description='CrowdCounting Context Aware Network')
parser.add_argument("--task_id", action="store", default="dev")
parser.add_argument('--note', action="store", default="write anything")
parser.add_argument('--input', action="store", type=str, default=HardCodeVariable().SHANGHAITECH_PATH_PART_A)
parser.add_argument('--datasetname', action="store", default="shanghaitech_keepfull")
# args with default value
parser.add_argument('--load_model', action="store", default="", type=str)
parser.add_argument('--lr', action="store", default=1e-8, type=float)
parser.add_argument('--momentum', action="store", default=0.9, type=float)
parser.add_argument('--decay', action="store", default=5*1e-3, type=float)
parser.add_argument('--epochs', action="store", default=1, type=int)
parser.add_argument('--batch_size', action="store", default=1, type=int,
help="only set batch_size > 0 for dataset with image size equal")
parser.add_argument('--test', action="store_true", default=False)
arg = parser.parse_args()
return arg
def meow_parse():
parser = argparse.ArgumentParser(description='CrowdCounting Context Aware Network')
parser.add_argument("--task_id", action="store", default="dev")
parser.add_argument("--model", action="store", default="dev")
parser.add_argument('--note', action="store", default="write anything")
parser.add_argument('--input', action="store", type=str, default=HardCodeVariable().SHANGHAITECH_PATH_PART_A)
parser.add_argument('--datasetname', action="store", default="shanghaitech_keepfull")
# args with default value
parser.add_argument('--load_model', action="store", default="", type=str)
parser.add_argument('--lr', action="store", default=1e-8, type=float)
parser.add_argument('--momentum', action="store", default=0.9, type=float)
parser.add_argument('--decay', action="store", default=5*1e-3, type=float)
parser.add_argument('--epochs', action="store", default=1, type=int)
parser.add_argument('--batch_size', action="store", default=1, type=int,
help="only set batch_size > 0 for dataset with image size equal")
parser.add_argument('--test', action="store_true", default=False)
arg = parser.parse_args()
return arg
def sanity_check_dataloader_parse():
parser = argparse.ArgumentParser(description='Dataloader')
parser.add_argument('--input', action="store", type=str, default=HardCodeVariable().SHANGHAITECH_PATH_PART_A)
parser.add_argument('--datasetname', action="store", default="shanghaitech_keepfull")
arg = parser.parse_args()
return arg
def real_args_parse():
"""
this is not dummy
if you are going to make all-in-one notebook, ignore this
:return:
"""
parser = argparse.ArgumentParser(description='CrowdCounting')
parser.add_argument("--task_id", action="store", default="dev")
parser.add_argument('-a', action="store_true", default=False)
parser.add_argument('--input', action="store", type=str, default=HardCodeVariable().SHANGHAITECH_PATH_PART_A)
parser.add_argument('--output', action="store", type=str, default="saved_model")
parser.add_argument('--model', action="store", default="pacnn")
# args with default value
parser.add_argument('--load_model', action="store", default="", type=str)
parser.add_argument('--lr', action="store", default=1e-8, type=float)
parser.add_argument('--momentum', action="store", default=0.9, type=float)
parser.add_argument('--decay', action="store", default=5*1e-3, type=float)
parser.add_argument('--epochs', action="store", default=1, type=int)
parser.add_argument('--test', action="store_true", default=False)
# pacnn setting only
parser.add_argument('--PACNN_PERSPECTIVE_AWARE_MODEL', action="store", default=0, type=int)
parser.add_argument('--PACNN_MUTILPLE_SCALE_LOSS', action="store", default=1, type=int,
help="1: compare each of density map/perspective map scale with gt for loss."
"0: only compare final density map and final density perspective map")
# args.original_lr = 1e-7
# args.lr = 1e-7
# args.batch_size = 1
# args.momentum = 0.95
# args.decay = 5 * 1e-4
# args.start_epoch = 0
# args.epochs = 120
# args.steps = [-1, 1, 100, 150]
# args.scales = [1, 1, 1, 1]
# args.workers = 4
# args.seed = time.time()
# args.print_freq = 30
arg = parser.parse_args()
return arg