Mode Type Size Ref File
100644 blob 61 169fe2b7d512a59cfedf86ddb7ed040173c7434d .gitignore
100644 blob 627 1538035fcf26778ad295fab357e0834aca0c69ad README.md
100644 blob 5559 ff5520de1d5821c55876ad6cb9d7b3d3b6a614ea args_util.py
040000 tree - 5e9d7f0e1fd3a9e4d5a37f3d6de0c3ecd3125af8 backup_notebook
040000 tree - 55d1d196f5b6ed4bfc1e8a715df1cfff1dd18117 bug
100644 blob 1775 1165f1aba0814b448a3595a32bd74f1967509509 crowd_counting_error_metrics.py
100644 blob 15757 7763ae4dfda47bff115c4d6b1e9a158e32a87ba7 data_flow.py
040000 tree - 17c9c74641b7acc37008a7f940a62323dd5b2b6b data_util
040000 tree - 2a46ff24b8b8997b4ca07c18e2326cb3c35dc5a0 dataset_script
040000 tree - 9862b9cbc6e7a1d43565f12d85d9b17d1bf1814e env_file
100644 blob 4460 9b254c348a3453f4df2c3ccbf21fb175a16852de eval_context_aware_network.py
100644 blob 428 35cc7bfe48a4ed8dc56635fd3a6763612d8af771 evaluator.py
100644 blob 1476 9d5c32dbe0c4c5a9fe418422faa890bec810f161 explore_model_summary.py
100644 blob 2718 b09b84e8b761137654ba6904669799c4866554b3 hard_code_variable.py
100644 blob 15300 cb90faba0bd4a45f2606a1e60975ed05bfacdb07 main_pacnn.py
100644 blob 2760 3c2d5ba1c81ef2770ad216c566e268f4ece17262 main_shanghaitech.py
100644 blob 2683 29189260c1a2c03c8e59cd0b4bd61df19d5ce098 main_ucfcc50.py
100644 blob 1707 99475b8d372114f55842a0a7e41e997e0c252cae model_util.py
040000 tree - 0299c66d187e5d378a25c436d9adaf5c327c7e27 models
040000 tree - d1c13a0fa59c995bbc5c766ea807108aabbc41a8 playground
040000 tree - 970ac54d8293aed6667e016f2245547f3a5449c3 pytorch_ssim
100644 blob 1297 4017dd69212681e01c4be222934bdbe1eda9e54c sanity_check_dataloader.py
100644 blob 3525 27067234ad3deddd743dcab0d7b3ba4812902656 train_attn_can_adcrowdnet.py
100644 blob 3488 e47bfc7e91c46ca3c61be0c5258302de4730b06d train_attn_can_adcrowdnet_freeze_vgg.py
100644 blob 4409 31334b0c0dae071fcf208e7c46801b722ec2bbf7 train_attn_can_adcrowdnet_simple.py
100644 blob 4379 18760897a0cf1c7f68fe59f3e26a6698a7f7558f train_compact_cnn.py
100644 blob 4761 3e3b3d03a92ba9b1eb9eed984e78845241c5030b train_compact_cnn_lrscheduler.py
100644 blob 3525 eb52f7a4462687c9b2bf1c3a887014c4afefa26d train_context_aware_network.py
100644 blob 4387 f28d251065ae0bde0c70b88db9f8a509a66fa9af train_custom_compact_cnn.py
100644 blob 4743 4a5d6ffabe484d93896c71ccecad1c7b758fd7e5 train_custom_compact_cnn_lrscheduler.py
040000 tree - 6a25bac28018c3731a07f9902532cb609dbc9539 train_script
100644 blob 5392 03c78fe177520b309ee21e5c2b7ca67598fad99a visualize_data_loader.py
100644 blob 1146 1b0f845587f0f37166d44fa0c74b51f89cf8b349 visualize_util.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using git:
git clone git://git.rocketgit.com/user/hahattpro/crowd_counting_framework

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main