/model_util.py (e52f9798497dd23f9610b99ce00affcdede70082) (2039 bytes) (mode 100644) (type blob)

import h5py
import torch
import shutil
import numpy as np
import os


def save_net(fname, net):
    with h5py.File(fname, 'w') as h5f:
        for k, v in net.state_dict().items():
            h5f.create_dataset(k, data=v.cpu().numpy())


def load_net(fname, net):
    with h5py.File(fname, 'r') as h5f:
        for k, v in net.state_dict().items():
            param = torch.from_numpy(np.asarray(h5f[k]))
            v.copy_(param)


def save_checkpoint(state, is_best, task_id, filename='checkpoint.pth.tar'):
    if not os.path.exists("saved_model"):
        os.makedirs("saved_model")
    full_file_name = os.path.join("saved_model", task_id + filename)
    torch.save(state, full_file_name)
    if is_best:
        shutil.copyfile(task_id + filename, task_id + 'model_best.pth.tar')
    return full_file_name


def calculate_padding(kernel_size, dilation):
    """
    https://discuss.pytorch.org/t/how-to-keep-the-shape-of-input-and-output-same-when-dilation-conv/14338

    o = output
    p = padding
    k = kernel_size
    s = stride
    d = dilation

    :return:
    """
    k = kernel_size
    d = dilation
    p = -1 + k + (k-1)*(d-1)
    p = p/2
    return p


def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


if __name__ == "__main__":
    print(calculate_padding(kernel_size=3, dilation=4))
    print(calculate_padding(kernel_size=5, dilation=1))
    print(calculate_padding(kernel_size=7, dilation=1))
    print(calculate_padding(kernel_size=9, dilation=1))
    print(calculate_padding(kernel_size=3, dilation=1))

    print("-----compact dilated cnn -----------------")
    print(calculate_padding(kernel_size=5, dilation=3))
    print(calculate_padding(kernel_size=5, dilation=2))
    print(calculate_padding(kernel_size=5, dilation=1))
    print("---dilated 3x3 with dilated 2 4 6")
    print(calculate_padding(kernel_size=3, dilation=2)) # 2
    print(calculate_padding(kernel_size=3, dilation=4)) # 4
    print(calculate_padding(kernel_size=3, dilation=6)) # 6

Mode Type Size Ref File
100644 blob 61 169fe2b7d512a59cfedf86ddb7ed040173c7434d .gitignore
100644 blob 699 c3455dfa4e1ddcb2e6c28d284dcc3471623e796b README.md
100644 blob 6955 5f8c6f423f9c2c73691ba8fad003ac6631d08347 args_util.py
040000 tree - 5e9d7f0e1fd3a9e4d5a37f3d6de0c3ecd3125af8 backup_notebook
040000 tree - 55d1d196f5b6ed4bfc1e8a715df1cfff1dd18117 bug
100644 blob 1775 1165f1aba0814b448a3595a32bd74f1967509509 crowd_counting_error_metrics.py
100644 blob 28454 c243a8fe2dd9fae9180d1e42742443ce7c5eea33 data_flow.py
040000 tree - 17c9c74641b7acc37008a7f940a62323dd5b2b6b data_util
040000 tree - 2a46ff24b8b8997b4ca07c18e2326cb3c35dc5a0 dataset_script
040000 tree - 9862b9cbc6e7a1d43565f12d85d9b17d1bf1814e env_file
100644 blob 4460 9b254c348a3453f4df2c3ccbf21fb175a16852de eval_context_aware_network.py
100644 blob 428 35cc7bfe48a4ed8dc56635fd3a6763612d8af771 evaluator.py
100644 blob 5987 6e113ad7abec0f20ba45f851c87418d4a1ceadb7 experiment_meow_main.py
100644 blob 1916 1d228fa4fa2887927db069f0c93c61a920279d1f explore_model_summary.py
100644 blob 2718 b09b84e8b761137654ba6904669799c4866554b3 hard_code_variable.py
100644 blob 15300 cb90faba0bd4a45f2606a1e60975ed05bfacdb07 main_pacnn.py
100644 blob 2760 3c2d5ba1c81ef2770ad216c566e268f4ece17262 main_shanghaitech.py
100644 blob 2683 29189260c1a2c03c8e59cd0b4bd61df19d5ce098 main_ucfcc50.py
100644 blob 2039 e52f9798497dd23f9610b99ce00affcdede70082 model_util.py
040000 tree - 5e0aed07e1837613c2eb0a437bf71130943cb85b models
040000 tree - 2cc497edce5da8793879cc5e82718d1562ef17e8 playground
040000 tree - 970ac54d8293aed6667e016f2245547f3a5449c3 pytorch_ssim
100644 blob 1722 9f2869867dd749cf9c68ffd4277cd8ad3785888a sanity_check_dataloader.py
100644 blob 3525 27067234ad3deddd743dcab0d7b3ba4812902656 train_attn_can_adcrowdnet.py
100644 blob 3488 e47bfc7e91c46ca3c61be0c5258302de4730b06d train_attn_can_adcrowdnet_freeze_vgg.py
100644 blob 5352 3ee3269d6fcc7408901af46bed52b1d86ee9818c train_attn_can_adcrowdnet_simple.py
100644 blob 5728 90b846b68f15bdc58e3fd60b41aa4b5d82864ec4 train_attn_can_adcrowdnet_simple_lrscheduler.py
100644 blob 5588 6ee730cd73a9b32b8b16a017c30f21e4399fc55a train_compact_cnn.py
100644 blob 5702 fdec7cd1ee062aa4a2182a91e2fb1bd0db3ab35f train_compact_cnn_lrscheduler.py
100644 blob 5611 2a241c876015db34681d73ce534221de482b0b90 train_compact_cnn_sgd.py
100644 blob 3525 eb52f7a4462687c9b2bf1c3a887014c4afefa26d train_context_aware_network.py
100644 blob 5651 48631e36a1fdc063a6d54d9206d2fd45521d8dc8 train_custom_compact_cnn.py
100644 blob 5594 07d6c9c056db36082545b5b60b1c00d9d9f6396d train_custom_compact_cnn_lrscheduler.py
100644 blob 5281 8a92eb87b54f71ad2a799a7e05020344a22e22d3 train_custom_compact_cnn_sgd.py
040000 tree - 86827b43050017919b2f10e13ee2aa3fdfea35eb train_script
100644 blob 5392 03c78fe177520b309ee21e5c2b7ca67598fad99a visualize_data_loader.py
100644 blob 1146 1b0f845587f0f37166d44fa0c74b51f89cf8b349 visualize_util.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using git:
git clone git://git.rocketgit.com/user/hahattpro/crowd_counting_framework

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main