/mse_ssim_loss.py (811554259182e63240d7aa9406f315377b3be1ac) (1066 bytes) (mode 100644) (type blob)

import torch
from torch import nn
# from pytorch_ssim import SSIM

from kornia.losses.ssim import SSIM

# class MseSsimLoss(torch.nn.Module):
#     """
#     :deprecated nope, bug, don't use
#     """
#     def __init__(self):
#         super(MseSsimLoss, self).__init__()
#         self.mse = nn.MSELoss(reduction='sum')
#         self.ssim = SSIM(window_size=5)
#
#     def forward(self, input, target):
#         return self.mse(input, target) - self.ssim(input, target)


class MseSsimLoss(torch.nn.Module):
    """
    :deprecated nope, bug, don't use
    """
    def __init__(self, device):
        super(MseSsimLoss, self).__init__()
        self.device = device
        self.mse = nn.MSELoss(reduction='none').to(device)
        self.ssim = SSIM(window_size=11, reduction='none').to(device)

    def forward(self, input, target):
        # oneMat = torch.ones_like(input).to(self.device)
        # return (self.mse(input, target) + 0.01 * (oneMat - self.ssim(input, target))).sum()
        return (self.mse(input, target) + (self.ssim(input, target))).sum()


Mode Type Size Ref File
100644 blob 61 169fe2b7d512a59cfedf86ddb7ed040173c7434d .gitignore
100644 blob 1361 9e6fc31748e7fe2025a907f5089557585ce36092 README.md
100644 blob 7437 c646aebe2f338e96319a6b13b82d32d42f05a171 args_util.py
040000 tree - 5e9d7f0e1fd3a9e4d5a37f3d6de0c3ecd3125af8 backup_notebook
040000 tree - 55d1d196f5b6ed4bfc1e8a715df1cfff1dd18117 bug
100644 blob 1775 1165f1aba0814b448a3595a32bd74f1967509509 crowd_counting_error_metrics.py
100644 blob 32086 e05400d3db4bb3e047bdaa265bd935abeaf3070c data_flow.py
040000 tree - 17c9c74641b7acc37008a7f940a62323dd5b2b6b data_util
040000 tree - c9877d18ed774578eacf2b2216261807a64dc3c1 dataset_script
040000 tree - 9862b9cbc6e7a1d43565f12d85d9b17d1bf1814e env_file
100644 blob 4460 9b254c348a3453f4df2c3ccbf21fb175a16852de eval_context_aware_network.py
100644 blob 428 35cc7bfe48a4ed8dc56635fd3a6763612d8af771 evaluator.py
100644 blob 8459 6353cbe5408009681c0c2a573d3b67ba6b432f98 experiment_meow_main.py
100644 blob 1916 1d228fa4fa2887927db069f0c93c61a920279d1f explore_model_summary.py
100644 blob 2718 b09b84e8b761137654ba6904669799c4866554b3 hard_code_variable.py
040000 tree - b3aa858a157f5e1e22c00fdb6f9dd071f4c6c163 local_train_script
040000 tree - 927d159228536a86499de8a294700f8599b8a60b logs
100644 blob 15300 cb90faba0bd4a45f2606a1e60975ed05bfacdb07 main_pacnn.py
100644 blob 2760 3c2d5ba1c81ef2770ad216c566e268f4ece17262 main_shanghaitech.py
100644 blob 2683 29189260c1a2c03c8e59cd0b4bd61df19d5ce098 main_ucfcc50.py
100644 blob 2039 e52f9798497dd23f9610b99ce00affcdede70082 model_util.py
040000 tree - d59211744250373ad892e65b45ecd5ace41e9493 models
100644 blob 1066 811554259182e63240d7aa9406f315377b3be1ac mse_ssim_loss.py
040000 tree - 2cc497edce5da8793879cc5e82718d1562ef17e8 playground
040000 tree - c7c295e9e418154ae7c754dc888a77df8f50aa61 pytorch_ssim
100644 blob 1727 1cd14cbff636cb6145c8bacf013e97eb3f7ed578 sanity_check_dataloader.py
040000 tree - a1e8ea43eba8a949288a00fff12974aec8692003 saved_model_best
100644 blob 3525 27067234ad3deddd743dcab0d7b3ba4812902656 train_attn_can_adcrowdnet.py
100644 blob 3488 e47bfc7e91c46ca3c61be0c5258302de4730b06d train_attn_can_adcrowdnet_freeze_vgg.py
100644 blob 5352 3ee3269d6fcc7408901af46bed52b1d86ee9818c train_attn_can_adcrowdnet_simple.py
100644 blob 5728 90b846b68f15bdc58e3fd60b41aa4b5d82864ec4 train_attn_can_adcrowdnet_simple_lrscheduler.py
100644 blob 8618 161ef9b114eca4d483fe2e720885769bb26548f6 train_compact_cnn.py
100644 blob 5702 fdec7cd1ee062aa4a2182a91e2fb1bd0db3ab35f train_compact_cnn_lrscheduler.py
100644 blob 5611 2a241c876015db34681d73ce534221de482b0b90 train_compact_cnn_sgd.py
100644 blob 3525 eb52f7a4462687c9b2bf1c3a887014c4afefa26d train_context_aware_network.py
100644 blob 5651 48631e36a1fdc063a6d54d9206d2fd45521d8dc8 train_custom_compact_cnn.py
100644 blob 5594 07d6c9c056db36082545b5b60b1c00d9d9f6396d train_custom_compact_cnn_lrscheduler.py
100644 blob 5281 8a92eb87b54f71ad2a799a7e05020344a22e22d3 train_custom_compact_cnn_sgd.py
040000 tree - aecf229828c959b215948e07b31692c8793a1f4f train_script
100644 blob 5392 03c78fe177520b309ee21e5c2b7ca67598fad99a visualize_data_loader.py
100644 blob 1146 1b0f845587f0f37166d44fa0c74b51f89cf8b349 visualize_util.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/hahattpro/crowd_counting_framework

Clone this repository using git:
git clone git://git.rocketgit.com/user/hahattpro/crowd_counting_framework

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main