iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/mplot/maxes.py (d024c01da6045be6c834593160fae957714c652c) (15404 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8

# Axes level functions (for Matplotlib)

#č Založme nový modul pro funkce (procedury),
#č které sice stejně jako mart pracují na urovni axes,
#č ale na rozdil od atomických funkcí mart modulu
#č udělaj z prazdných os hotový obrazek.
#č mplot.show2D() může použivat tuhle nabídku obrázků.
#
#č funkce v tomto modulu dostávájí jako parameter jedině ax
#č ax ale má nastavené atributy .space a .sample_box

import numpy as np
from . import mart
from . import mgraph

from matplotlib import colors as mcolors


# it is mostly for qt_plot, it offers availiable options to user
__all__ =   [
            'candidates_plot', 'candidates_sampling_plot',
            'convex_hull_plot', 'tri_plot', 'tri_nodes_plot',
            'tri_R_plot', 'tri_GK_plot',
            'tri_R_nodes_plot', 'tri_GK_nodes_plot',
            'convergence_diagram', 'convergence_legend', 
            'just_points', 'just_points_really',
            'base_drawing', 'candidates_drawing',
            'just_qhull', 'qhull_plot', 'qhull_infinite',
            'dhull_scheme_plot', 'dhull_random_plot',
            'bhull_plot', 'bhull_infinite',
            'shull_plot',
            'completehull_plot'
            ]





def candidates_sampling_plot(ax, linewidths=[0.7, 0.5, 0.4, 0.3, 0.2, 0.1]):
    from .. import simplex as six
    from .. import estimation as stm
    
    def _stm_draw_nodes(*args, **kwargs):
        #č v tomto plot bude šilený bordel v tom, kdo kolbek spouští
        #č a kdo mu co tam posílá. Na event a na nodes spolehat ale můžeme
        #
        # callback's signature: sx, indices=, simplex=, nodes=, cell_stats=
        # positional "sx" is Tri object itself
        # "indices" are numbers of simplex vertices
        # "simplex" are vertices itself
        # "nodes" is what we really want to draw
        
        event = kwargs['cell_stats']['event']
        
        if event in ('mix', 'outside'):
            mart.plot_sample(ax, kwargs['nodes'], ls='', marker='.',\
                         mec="#00007E", mfc="#00007E", ms=1.5, alpha=0.5,\
                         rasterized=True)
        
    data = stm.fast_simplex_estimation(ax.sample_box, model_space=ax.space,\
                                  sampling_space=ax.space, \
                                   weighting_space=ax.space,\
                                    outside_budget=1000, \
                                     simplex_budget=100,\
                                    callback=_stm_draw_nodes, design=None)    
    
    mart.setup(ax)
    mart.curly(ax, linewidths=linewidths)
    mart.triplot(ax, color="#B2B2B2", lw=0.5, zorder=1000)
    mart.plot_points(ax, ms=5, zorder=100500)
    try:
        mart.plot_boundaries(ax, lw=0.7, zorder=10500)
    except:
        pass

def candidates_plot(ax):
    tri_plot(ax, tri_space=None, linewidths=[0.7, 0.5, 0.4, 0.3], data_offset=0.4)
    blue_colors = ["#BDBDFF", "#9999FF", "#00007E", "#000057"]
    blue_cmap = mcolors.LinearSegmentedColormap.from_list("bluecmap", blue_colors)
    mart.scatter_candidates(ax, s=1.5, marker='.', cmap=blue_cmap, rasterized=True)
    mart.plot_the_best_candidate(ax, "^", color='#000057')
    mart.plot_points(ax, ms=5, zorder=1005000)
    
#    if ax.space in ('G', 'GK'):
#        ax.xaxis.set_label_coords(1, 0.47)
#        ax.set_xlabel("$x_1$")
#        ax.text(0.47, 1, '$x_2$', ha='right',va='top', transform=ax.transAxes)
#    else:
#        ax.set_xlabel("$x_1$")
#        ax.set_ylabel("$x_2$")

def convergence_diagram(ax, sources=['box', 'user'], apply_proxy=False):
    #č pokorně jedeme použiť guessbox
    #č nic jiného nebylo pořádně implementováno
    from .. import stm_df 
    df = stm_df.get_tri_data_frame(ax.sample_box, sources, apply_proxy)
    try:
        pf_exact = ax.sample_box.pf_exact
        pf_exact_method = ax.sample_box.pf_exact_method
        mgraph.tri_estimation_plot(ax, df, pf_exact=pf_exact, \
                            pf_exact_method=pf_exact_method, plot_outside=True)
    except:
        mgraph.tri_estimation_plot(ax, df, plot_outside=True)
    ax.margins(0)
    ax.set_yscale('log')
    ax.set_xlabel("Number of points")
    ax.set_ylabel("Probability measure")
    
    
def convergence_legend(ax):
    convergence_diagram(ax)
    ax.legend(bbox_to_anchor=(0.5, -0.15), ncol=2, loc='upper center')

#č ten [plot] zásadně vytvaří své struktury, nepouzívá oné ze skříňky,
#č protože já vím, že v těch obrázcích, ve kterých chcu ho použit,
#č můde být třeba použit řez a skříňka tedy potřebné struktury může nemít
def tri_nodes_plot(ax, tri_space=None, tn_scheme=None,\
                     linewidths=[0.7, 0.5, 0.4, 0.3, 0.2, 0.1]):
    from .. import simplex as six
    if tri_space is None:
        tri_space = ax.space
    
    #č já tuhle funkciju potřebuju ne abych kreslil bodíky ve vrcholech
    if tn_scheme is None:
        try:
            tn_scheme = ax.sample_box.Tri.tn_scheme
        except:
            import quadpy
            tn_scheme = quadpy.tn.grundmann_moeller(sample_box.nvar, 5)
            
    
    def _draw_nodes(*args, **kwargs):
        # callback's signature: sx, indices=, simplex=, nodes=, cell_stats=
        # positional "sx" is Tri object itself
        # "indices" are numbers of simplex vertices
        # "simplex" are vertices itself
        # "nodes" is what we really want to draw
        
        event = kwargs['cell_stats']['event']
        
        if event == 'mix':
            color = '#FFF39A' #'xkcd: dark cream' # (255, 243, 154, 255)
        elif event == 'failure':
            color = '#fdc1c5' #'xkcd: pale rose' # (#fdc1c5)
        elif event == 'success':
            color = '#a7ffb5' #'xkcd:light seafoam green' #a7ffb5
        else:
            assert 100500 < 0 #оӵ мар лэсьтӥське татын?
            
        mart.plot_sample(ax, kwargs['nodes'], ls='', marker='.',\
                         mew=0, mfc=color, ms=2, alpha=0.5, rasterized=True)
        
        
        
    
    #č vytvařím vlastní tringulaciju zde vécemeně kvůli callbackům
    #č jde, samozřejmě všecko udělat jínak, 
    #č ale nechcu zrovna zde z toho robiť vědu
    Tri = six.JustCubatureTriangulation(ax.sample_box, tn_scheme=tn_scheme, \
                                    tri_space=tri_space, issi=None,\
                                    weighting_space=None, \
                                    incremental=False,\
                                    on_add_simplex=_draw_nodes,\
                                    on_delete_simplex=None)
    
    mart.setup(ax)
    mart.curly(ax, linewidths=linewidths)
    Tri.integrate()
    if tri_space == ax.space:
        mart.triplot(ax, color="#B2B2B2", lw=0.5, zorder=100)
    else:
        mart.tri_plot(ax, Tri=Tri, color="#B2B2B2", lw=0.5, zorder=100)
    
    mart.plot_points(ax, ms=2.5, zorder=100500)
    try:
        mart.plot_boundaries(ax, lw=0.7, zorder=1050)
    except:
        pass
    mart.setup_labels(ax)

def tri_R_nodes_plot(ax, **kwargs):
    tri_nodes_plot(ax, tri_space='R', **kwargs)
    
def tri_GK_nodes_plot(ax, **kwargs):
    tri_nodes_plot(ax, tri_space='GK', **kwargs)


#č ten [plot] zásadně vytvaří své struktury, nepouzívá oné ze skříňky,
#č protože já vím, že v těch obrázcích, ve kterých chcu ho použit,
#č můde být třeba použit řez a skříňka tedy potřebné struktury může nemít
def tri_plot(ax, tri_space=None, linewidths=[0.7, 0.5, 0.4, 0.3, 0.2, 0.1], data_offset=0.5):
    from .. import simplex as six
    if tri_space is None:
        tri_space = ax.space
    
    Tri = six.JustCubatureTriangulation(ax.sample_box, tn_scheme=None, \
                                    tri_space=tri_space, issi=None,\
                                    weighting_space=None, \
                                    incremental=False,\
                                    on_add_simplex=None,\
                                    on_delete_simplex=None)
    
    mart.setup(ax)
    mart.curly(ax, linewidths=linewidths)
    if tri_space == ax.space:
        mart.triplot(ax, color="#B2B2B2", lw=0.5, zorder=100)
    else:
        mart.tri_plot(ax, Tri=Tri, color="#B2B2B2", lw=0.5, zorder=100)
    
    mart.plot_points(ax, ms=2.5, zorder=100500)
    try:
        mart.plot_boundaries(ax, lw=0.7, zorder=1050)
    except:
        pass
    mart.setup_labels(ax, data_offset)
        
    

def tri_R_plot(ax, **kwargs):
    tri_plot(ax, tri_space='R', **kwargs)
    
def tri_GK_plot(ax, **kwargs):
    tri_plot(ax, tri_space='GK', **kwargs)

#č ten [plot] zásadně vytvaří svou obálku, nepouzívá onou ze skříňky,
#č protože já vím, že v těch obrázcích, ve kterých chcu ho použit,
#č můde být třeba použit řez a skříňka tedy potřebné struktury může nemít
def convex_hull_plot(ax, tri_space=None, linewidths=[0.7, 0.5, 0.4, 0.3, 0.2, 0.1]):
    from .. import convex_hull as khull
    if tri_space is None:
        tri_space = ax.space
    
    mart.setup(ax)
    mart.curly(ax, linewidths=linewidths)
    qhull = khull.QHull(ax.sample_box, space=tri_space, incremental=False)
    mart.qhull_plot(ax, qhull, color="#B2B2B2", lw=0.7, zorder=100)
    mart.plot_points(ax, ms=2.5, zorder=100500)
    try:
        mart.plot_boundaries(ax, lw=0.7, zorder=1050)
    except:
        pass
    mart.setup_labels(ax)

def just_points(ax):
    ax.set_xlabel('$x_{1}$')
    ax.set_ylabel('$x_{2}$')
    
    ax.set_aspect(1)
    #ax.set_box_aspect(1)
    mart.scatter_points(ax)
    
def just_points_really(ax):
    ax.set_aspect(1)
    ax.set_frame_on(False)
    mart.scatter_points(ax)

def base_drawing(ax):
    mart.setup(ax)
    mart.curly(ax)
    try:
        mart.triplot(ax, color="grey", linewidth=0.4)
    except:
        pass
    mart.plot_boundaries(ax, linewidth=0.7)
    mart.scatter_points(ax)
    
    
def candidates_drawing(ax):
    try:
        mart.triplot(ax, color="grey", linewidth=0.4)
    except:
        pass
    mart.plot_boundaries(ax, linewidth=0.7)
    
    #č ax.scatter posílá parameter cmap Collections třídě.
    #č Třída mimo jiného dědí cm.ScalarMappable,
    #č která inicializaci deleguje funkci cm.get_cmap() ve (svém) modulu cm.
    # cmap='viridis_r' #cmap='plasma',
    mart.scatter_candidates(ax, s=5, marker='.', cmap='plasma_r',\
     alpha=None, linewidths=None, edgecolors=None, plotnonfinite=False, rasterized=True)
    mart.plot_the_best_candidate(ax, "^", color='#3D0D5B')
    
        
    
    

# defaults
hezkymodře = (85/255, 70/255, 1, 1)
inside_color = [(185/255, 228/255, 14/255, 1)]
outside_color = [(128/255, 128/255, 128/255, 0.5)]
hull_colors = (hezkymodře, inside_color, outside_color) # border_inside_outside

def just_qhull(ax, lw=1.5, **kwargs):
    from .. import convex_hull as khull
    qhull = khull.QHull(ax.sample_box, space=ax.space, incremental=False)
    border_color, _, __ = hull_colors

    # setup
    ax.set_aspect(1)
    #ax.set_box_aspect(3/4)
    #ax.set_xlim(-lim, lim)
    #ax.set_ylim(-lim, lim)
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')
    
    mart.qhull_plot(ax, qhull, color=border_color, lw=lw, zorder=100, **kwargs)
    
    # finally samples
    #
    #mart.scatter_sample(ax, f, c='g', marker='P', zorder=1000) # why?
    mart.scatter_points(ax, zorder=100500)



def _hull_model_plot(ax, hull, hull_plot, ns=50000, lim=3, lw=1.5, s=4, hull_colors=hull_colors, **kwargs):
    border_color, inside_color, outside_color = hull_colors

    # setup
    ax.set_aspect(1)
    #ax.set_box_aspect(3/4)
    ax.set_xlim(-lim, lim)
    ax.set_ylim(-lim, lim)
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')
    
    nodes = ax.sample_box.f_model(ns)
    mask = hull.is_outside(nodes)
    mart.scatter_sample(ax, nodes[mask], c=outside_color, marker='.', s=s)
    mart.scatter_sample(ax, nodes[~mask], c=inside_color, marker='.', s=s)
    hull_plot(ax, hull, color=border_color, lw=lw, zorder=100, **kwargs)
    
    # finally samples
    #
    #mart.scatter_sample(ax, f, c='g', marker='P', zorder=1000) # why?
    mart.scatter_points(ax, zorder=100500)
    

    
    
    
def qhull_plot(ax, **kwargs):
    from .. import convex_hull as khull
    qhull = khull.QHull(ax.sample_box, space=ax.space, incremental=False)
    _hull_model_plot(ax, qhull, mart.qhull_plot, **kwargs)
    
    #mart.qhull_polygon(ax, qhull, fc="white", ec="black", lw=0.75)


def qhull_infinite(ax, **kwargs):
    from .. import convex_hull as khull
    qhull = khull.QHull(ax.sample_box, space=ax.space, incremental=False)
    _hull_model_plot(ax, qhull, mart.dhull_plot, **kwargs)




def dhull_scheme_plot(ax, **kwargs):
    from .. import convex_hull as khull
    import quadpy
    
    scheme = quadpy.un.stroud_un_7_1(2)
    dhull = khull.DirectHull(ax.sample_box, scheme.points, space=ax.space)
    _hull_model_plot(ax, dhull, mart.dhull_plot, **kwargs)
    

def dhull_random_plot(ax, ndir=8, rand_dir=None, **kwargs):
    from .. import convex_hull as khull
    from .. import sball
    
    if rand_dir is None:
        rand_dir = sball.get_random_directions(ndir, 2)
    dhull = khull.DirectHull(ax.sample_box, rand_dir, space=ax.space)
    _hull_model_plot(ax, dhull, mart.dhull_plot, **kwargs)  
    
    
def bhull_plot(ax, **kwargs):
    from .. import convex_hull as khull
    
    bhull = khull.BrickHull(ax.sample_box, space=ax.space)
    _hull_model_plot(ax, bhull, mart.bhull_plot, **kwargs)
    
def bhull_infinite(ax, **kwargs):
    from .. import convex_hull as khull
    
    bhull = khull.BrickHull(ax.sample_box, space=ax.space)
    _hull_model_plot(ax, bhull, mart.dhull_plot, **kwargs)    
    
    
def shull_plot(ax, **kwargs):
    from .. import convex_hull as khull
    
    shull = khull.GBall(ax.sample_box)
    _hull_model_plot(ax, shull, mart.shull_plot, **kwargs)
    
    

def completehull_plot(ax, ndir=3, rand_dir=None, **kwargs):
    from .. import convex_hull as khull
    from .. import sball
    
    if rand_dir is None:
        rand_dir = sball.get_random_directions(ndir, 2)
    
    copletehull = khull.CompleteHull(ax.sample_box, rand_dir, space=ax.space)
    shull = khull.GBall(ax.sample_box)
    #_hull_model_plot(ax, copletehull, mart.dhull_plot, **kwargs)
    #_hull_model_plot(ax, copletehull, mart.shull_plot, ns=0, **kwargs)
    
    ns=50000
    lim=3
    lw=1.5
    s=4
    #hull_colors=hull_colors, **kwargs):
    border_color, inside_color, outside_color = hull_colors

    # setup
    ax.set_aspect(1)
    #ax.set_box_aspect(3/4)
    ax.set_xlim(-lim, lim)
    ax.set_ylim(-lim, lim)
    ax.set_xlabel('$x_1$')
    ax.set_ylabel('$x_2$')
    
    nodes = ax.sample_box.f_model(ns)
    completemask = copletehull.is_outside(nodes)
    smask = shull.is_outside(nodes)
    mask = np.any([completemask, smask], axis=0)
    mart.scatter_sample(ax, nodes[mask], c=outside_color, marker='.', s=s)
    mart.scatter_sample(ax, nodes[~mask], c=inside_color, marker='.', s=s)
    mart.dhull_plot(ax, copletehull, color=border_color, lw=lw, zorder=100, **kwargs)
    mart.shull_plot(ax, shull, color=border_color, lw=lw/2, ls='--', zorder=100, **kwargs)
    
    # finally samples
    #
    #mart.scatter_sample(ax, f, c='g', marker='P', zorder=1000) # why?
    mart.scatter_points(ax, zorder=100500)
    


Mode Type Size Ref File
100644 blob 28117 0907e38499eeca10471c7d104d4b4db30b8b7084 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 72 458b7e2ca46acd9ec0d2caf3cc4d72e515bb73dc __main__.py
100644 blob 73368 3d245b8568158ac63c80fa0847631776a140db0f blackbox.py
100644 blob 11243 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d candybox.py
100644 blob 29927 066a2d10ea1d21daa6feb79fa067e87941299ec4 convex_hull.py
100644 blob 102798 059ae717e71c651975673420cd8230fbef171e5e dicebox.py
100644 blob 36930 a775d1114bc205bbd1da0a10879297283cca0d4c estimation.py
100644 blob 34394 3f0ab9294a9352a071de18553aa687c2a9e6917a f_models.py
100644 blob 31142 3e14ac49d16a724bb43ab266e8bea23114e47958 g_models.py
100644 blob 20908 457329fe567f1c0a9950c21c7c494cccf38193cc ghull.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 29393 96162a5d181b8307507ba2f44bafe984aa939163 lukiskon.py
100644 blob 2004 6ea8dc8f50a656c48f786d5a00bd6398276c9741 misc.py
040000 tree - e5999d6694937f9afb4db06b5f23c14b5a5894c6 mplot
100644 blob 1462 437b0d372b6544c74fea0d2c480bb9fd218e1854 plot.py
100644 blob 2807 1feb1d43e90e027f35bbd0a6730ab18501cef63a plotly_plot.py
040000 tree - 82bc1cfaa8d3caab910e6a4e165867257e2db4eb qt_gui
100644 blob 8566 5c8f8cc2a34798a0f25cb9bf50b5da8e86becf64 reader.py
100644 blob 4284 a0e0b4e593204ff6254f23a67652804db07800a6 samplebox.py
100644 blob 6558 df0e88ea13c95cd1463a8ba1391e27766b95c3a5 sball.py
100644 blob 6739 0b6f1878277910356c460674c04d35abd80acf13 schemes.py
100644 blob 76 11b2fde4aa744a1bc9fa1b419bdfd29a25c4d3e8 shapeshare.py
100644 blob 54074 ba978868adb487385157afa5b3420f9ad90e4f46 simplex.py
100644 blob 13090 2b9681eed730ecfadc6c61b234d2fb19db95d87d spring.py
100644 blob 10953 da8a8aaa8cac328ec0d1320e83cb802b562864e2 stm_df.py
040000 tree - b22eed7af92e6d5f1e89ba72a180961987371aa7 testcases
100644 blob 2465 d829bff1dd721bdb8bbbed9a53db73efac471dac welford.py
100644 blob 23548 05cfad7f50dcef7020bc9bb13d95512f680e9f13 whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main