iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/mplot/mart.py (b7bc75138fa690836195800bc9203e01226c2a90) (21721 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8


#č nazvy proměnných jsou v angličtině
#č Ale komenty teda ne)

import numpy as np
import matplotlib.tri as mtri
import matplotlib.path as mpath
import matplotlib.colors as mcolor
import matplotlib.patches as mpatches

from .. import misc as wmisc

#č Tahlensta blbost je použita funkcí tripcolor()
#č Je třeba jú překopat na Triangulation třidu,
#č která get_events má jako svůj method.
def get_events(sb, simplices): #simplices = bx.tri.simplices
    """
    Metoda musí simplexům přiřazovat jev 
    0=success, 1=failure, 2=mix
    """
    in_failure = np.isin(simplices, sb.failure_points)
    has_failure = in_failure.any(axis=1)
    all_failure = in_failure.all(axis=1)
    return np.int8(np.where(has_failure, np.where(all_failure, 1, 2), 0))

#č napadlo mě, že bych mohl matplotlibovskému Axes
#č přiřazovat (připsavat, zadávat) atribut 'space'
#č Daválo by to smysl, ne? U všeho ostatního, u sample boksů
#č ne vždy na jedném sabplotu někdo potřebuje
#č kreslit z různejch prostoru.
#č Zkrátka, funkce v tomto modulu požadujou aby 
#č ax.space a ax.sample_box byl nastaven!

# ax.space and ax.sample_box attributes should (expected to) be set up!


def scatter_sample(ax, sample, **kwargs):
    xy = getattr(sample, ax.space)
    x, y = xy[:,:2].T
    return ax.scatter(x, y, **kwargs)

def plot_sample(ax, sample, *args, **kwargs):
    xy = getattr(sample, ax.space)
    x, y = xy[:,:2].T
    return ax.plot(x, y, *args, **kwargs)



def scatter_points(ax, **kwargs):
    xy = getattr(ax.sample_box, ax.space)
    nsim = len(xy)
    x, y = xy[:,:2].T
    
    failsi = ax.sample_box.failsi
    
    try: # proxy denotes to implicitly-known values
        proxy = ax.sample_box.proxy.astype(bool) 
    except AttributeError:
        proxy = np.full(nsim, False, dtype=np.bool)
    
    scatter_list = []
    
    #č byl jsem svědkem, že matplotlib zlobil ve 3D 
    #č kvůli tomu, že nebyl žádný safe vzorek
    #č proto raději budu přidávat tečky podmíněne
    mask = np.all((~failsi, ~proxy), axis=0)
    if np.any(mask): #success
        scatter_list.append(ax.scatter(x[mask], y[mask], c='g', marker='P', **kwargs))
    
    mask = np.all((failsi, ~proxy), axis=0)
    if np.any(mask): #failures
        scatter_list.append(ax.scatter(x[mask], y[mask], c='r', marker='X', **kwargs))
    
    mask = np.all((~failsi, proxy), axis=0)
    if np.any(mask): #proxy_successes
        scatter_list.append(ax.scatter(x[mask], y[mask], c='#77AC30', marker='h', **kwargs))
    
    mask = np.all((failsi, proxy), axis=0)
    if np.any(mask): #proxy_failures
        scatter_list.append(ax.scatter(x[mask], y[mask], c='#D95319', marker='H', **kwargs))
    
    return scatter_list # success, failures, proxy_successes, proxy_failures
    

def plot_points(ax, ls='', **kwargs):
    xy = getattr(ax.sample_box, ax.space)
    nsim = len(xy)
    x, y = xy[:,:2].T
    
    failsi = ax.sample_box.failsi
    
    try: # proxy denotes to implicitly-known values
        proxy = ax.sample_box.proxy.astype(bool) 
    except AttributeError:
        proxy = np.full(nsim, False, dtype=np.bool)
    
    plot_list = []
    
    #č byl jsem svědkem, že matplotlib zlobil ve 3D 
    #č kvůli tomu, že nebyl žádný safe vzorek
    #č proto raději budu přidávat tečky podmíněne
    mask = np.all((~failsi, ~proxy), axis=0)
    if np.any(mask): #success
        plot_list.append(ax.plot(x[mask], y[mask], mec='g', mfc='g',\
                         marker='P', ls=ls, **kwargs))
    
    mask = np.all((failsi, ~proxy), axis=0)
    if np.any(mask): #failures
        plot_list.append(ax.plot(x[mask], y[mask], mec='r', mfc='r',\
                         marker='X', ls=ls, **kwargs))
    
    mask = np.all((~failsi, proxy), axis=0)
    if np.any(mask): #proxy_successes
        plot_list.append(ax.plot(x[mask], y[mask], mec='#77AC30', mfc=(0,0,0,0),\
                         marker='h', ls=ls, **kwargs))
    
    mask = np.all((failsi, proxy), axis=0)
    if np.any(mask): #proxy_failures
        plot_list.append(ax.plot(x[mask], y[mask], mec='#D95319', mfc=(0,0,0,0),\
                         marker='H', ls=ls, **kwargs))
    
    return plot_list # success, failures, proxy_successes, proxy_failures


#č triplot - pokud ax.space == tri_space
#č tri_plot - pokud ax.space != Tri.tri_space
def tri_plot(ax, Tri=None, fmt='-', ns=100, **kwargs):
    if ax.sample_box.nvar == 2:
        lines = []
        
        if Tri is None:
            Tri = ax.sample_box.Tri
        
        # take coordinates in the space, where triangulation has been performed
        sampled_plan_tri = getattr(ax.sample_box, Tri.tri_space)
        
        #č mohli bychom zde machrovat se zkracenou smyčkou,
        #č mohli bychom jednoduše zavolat zabudovanou v matplotlib funkciju,
        #č my ale vůbec kontrolovat rovnost prostorů nebudeme, 
        #č nechť to dělá volající kód
        
        #if ax.space == Tri.tri_space:
        #   #return triplot(ax, **kwargs)
        #   
        #    #for simplex_id in simplex_ids:
        #    #    triangle = simplices[simplex_id]
        #    #    pos = sampled_plan_tri[triangle[[0,1,2,0]]]
             
        for triangle in Tri.tri.simplices:
            x_tri_1 = np.linspace(sampled_plan_tri[triangle[0],0], sampled_plan_tri[triangle[1],0], ns, endpoint=False)
            y_tri_1 = np.linspace(sampled_plan_tri[triangle[0],1], sampled_plan_tri[triangle[1],1], ns, endpoint=False)
            x_tri_2 = np.linspace(sampled_plan_tri[triangle[1],0], sampled_plan_tri[triangle[2],0], ns, endpoint=False)
            y_tri_2 = np.linspace(sampled_plan_tri[triangle[1],1], sampled_plan_tri[triangle[2],1], ns, endpoint=False)
            x_tri_3 = np.linspace(sampled_plan_tri[triangle[2],0], sampled_plan_tri[triangle[0],0], ns, endpoint=True)
            y_tri_3 = np.linspace(sampled_plan_tri[triangle[2],1], sampled_plan_tri[triangle[0],1], ns, endpoint=True)
            
            tri_bound_tri = np.concatenate(((x_tri_1, y_tri_1), (x_tri_2, y_tri_2), (x_tri_3, y_tri_3)), axis=1).T
            #č vytvořme sample
            tri_bound = ax.sample_box.f_model.new_sample(tri_bound_tri, space=Tri.tri_space)
            
            xy = getattr(tri_bound, ax.space)
            x, y = xy.T
            lines.append(ax.plot(x, y, fmt, **kwargs))
        
        return lines


#č triplot() jednoduše volá zabudovanou do matplotlibu funkci
def triplot(ax, **kwargs):
    xy = getattr(ax.sample_box, ax.space)
    x, y = xy[:,:2].T
    
    return ax.triplot(x, y, **kwargs)


def tripcolor(ax, sfm_colors=None, **kwargs):
    xy = getattr(ax.sample_box, ax.space)
    x, y = xy[:,:2].T
    tri = mtri.Triangulation(x, y)
    
    if sfm_colors is None:
        # make a color map of fixed colors
        s = '#a7ffb5' #'xkcd:light seafoam green' #a7ffb5
        f = '#fdc1c5' #'xkcd: pale rose' # (#fdc1c5)
        m = '#FFF39A' #'xkcd: dark cream' # (255, 243, 154, 255)
        sfm_colors = [s, f, m]
    
    if 'cmap' not in kwargs:
        # 0=success, 1=failure, 2=mix
        kwargs['cmap'] = mcolor.ListedColormap(sfm_colors)
    if 'norm' not in kwargs:
        kwargs['norm'] = mcolor.NoNorm()
    
    # same as facecolors
    C = get_events(ax.sample_box, tri.get_masked_triangles())
    
    #č tak to má bejt, aby MPL jednoznačně bral barvy jako barvy obličejů
    #č jenomže to může zlobit
    return ax.tripcolor(tri, facecolors=C, **kwargs)
    

def plot_boundaries(ax, fmt='-b', nrod=200, **kwargs):
    xmin, xmax = ax.get_xlim()
    ymin, ymax = ax.get_ylim()
    limits = np.array([[xmin, ymin], [xmax, ymax]])
    bounds = ax.sample_box.get_2D_boundary(nrod=nrod, viewport_sample=limits,\
                                             viewport_space=ax.space)
    lines = []
    for bound in bounds:
        xy = getattr(bound, ax.space)
        x, y = xy[:,:2].T
        lines.append(ax.plot(x, y, fmt, **kwargs))
    
    return lines



def scatter_candidates(ax, **kwargs):
    """
    Plot all nodes series from ax.sample_box.candidates_index list.
    Function extracts ax.sample_box.potential attribute from nodes 
    and uses it for colormapping. 
    Max value is taken from ax.sample_box.highest_bid
    Returns nothing.
    example:
    scatter_candidates(ax, s=100.500, marker='.', cmap='plasma', alpha=0.5, linewidths=None, *, edgecolors=None, plotnonfinite=False)
    """
    potential = ax.sample_box.potential
    maxcb = ax.sample_box.highest_bid
    
    #č a teď jdeme!
    for id, cb in ax.sample_box.candidates_index.items():
        values = getattr(cb, potential)
        x, y = getattr(cb, ax.space)[:,:2].T
        ax.scatter(x, y, c=values, vmin=0, vmax=maxcb, **kwargs)


def plot_the_best_candidate(ax, *args, **kwargs):
    """
    Plots ax.sample_box.bidder node.
    Returns nothing.
    example:
    plot_the_best_candidate(ax, "^", color='green')
    """
    xy = getattr(ax.sample_box.bidder, ax.space)
    x, y = xy[:,:2].T
    return ax.plot(x, y, *args, **kwargs)



def qhull_polygon(ax, qhull, **kwargs):
    x, y = qhull.points[qhull.vertices].T
    return ax.fill(x, y, **kwargs)


                
def qhull_plot(ax, qhull=None, fmt='-', ns=100, **kwargs):
    if ax.sample_box.nvar == 2: #č jinak nic nedeláme
        if qhull is None:
            qhull = ax.sample_box.convex_hull
            
        if ax.space == qhull.space:
            points = qhull.points
            lines = []
            for simplex in qhull.simplices:
                xy = points[simplex]
                x, y = xy.T
                lines.append(ax.plot(x, y, fmt, **kwargs))
            return lines
        
        else:
            #оӵ кулэ ӧвӧл обновлять экран карыны
            sampled_plan_tri = qhull.points
            for simplex in qhull.simplices:
                start_id, end_id = simplex
                
                x_bound = np.linspace(sampled_plan_tri[start_id,0], sampled_plan_tri[end_id,0], ns, endpoint=True)
                y_bound = np.linspace(sampled_plan_tri[start_id,1], sampled_plan_tri[end_id,1], ns, endpoint=True)
                
                # sample compatible
                #оӵ малы транспонировать кароно? Озьы кулэ!
                bound_tri = np.vstack((x_bound, y_bound)).T
                #č vytvořme sample
                bound = ax.sample_box.f_model.new_sample(bound_tri, space=qhull.space)
                
                xy = getattr(bound, ax.space)
                x, y = xy.T
                lines.append(ax.plot(x, y, fmt, **kwargs))
                
            return lines



def dhull_plot(ax, hull, **kwargs):
    #č zatím uděláme jen pro 2D infinite lajny
    design_points = hull.get_design_points()
    lines = []
    if (hull.sample.nvar == 2) and (ax.space == hull.space):
        for equation in hull.equations:
            #č ve 2D bych očekával v rovnici pouze 3 hodnoty (já potřebuji směry)
            x, y, offset = equation
            design_point = [-x*offset, -y*offset] #č offset je prej zápornej
            slope = np.divide(-x, y)
            lines.append(ax.axline(design_point, slope=slope, **kwargs))
    return lines
            
def bhull_plot(ax, bhull, **kwargs):
    if ax.space == bhull.space:
        point = bhull.mins[:2]
        x1, y1 = point
        x2, y2 = bhull.maxs[:2]
        if 'fill' not in kwargs:
            kwargs['fill'] = False
        frame = mpatches.Rectangle(point, x2-x1, y2-y1, **kwargs)
        return ax.add_patch(frame) 

def shull_plot(ax, hull, **kwargs):
    from ..ghull import Ghull
    ghull = Ghull(hull)
    R = ghull.get_R()
    if 'fill' not in kwargs:
        kwargs['fill'] = False
    return gcircle(ax, r=R, **kwargs)


## DEPRECATED
## use qhull_plot instead
#def convex_plot(ax, fmt='-m', ns=100, qhull=None, **kwargs):
#    if ax.sample_box.nvar == 2: #č jinak nic nedeláme
#       if qhull is None:
#           simplices = ax.sample_box.convex_hull.simplices
#        else:
#           simplices = qhull.simplices
#        
#        if tri_space is None:
#           
#        # convex hull should be made in the same space as triangulation, 
#        # Will we take coordinates in the triangulation space, I guess?
#        sampled_plan_tri = getattr(ax.sample_box, ax.sample_box.tri_space)
#        
#        # hmm...
#        lines = []
#        if ax.space == ax.sample_box.tri_space:
#            for simplex in simplices:
#                xy = sampled_plan_tri[simplex]
#                x, y = xy.T
#                lines.append(ax.plot(x, y, fmt, **kwargs))
#                    
#    else:
#        #оӵ кулэ ӧвӧл обновлять экран карыны
#        for simplex in simplices:
#            start_id, end_id = simplex
#            
#            x_bound = np.linspace(sampled_plan_tri[start_id,0], sampled_plan_tri[end_id,0], ns, endpoint=True)
#            y_bound = np.linspace(sampled_plan_tri[start_id,1], sampled_plan_tri[end_id,1], ns, endpoint=True)
#            
#            # sample compatible
#            #оӵ малы транспонировать кароно? Озьы кулэ!
#            bound_tri = np.vstack((x_bound, y_bound)).T
#            #č vytvořme sample
#            bound = ax.sample_box.f_model.new_sample(bound_tri, space=ax.sample_box.tri_space)
#            
#            xy = getattr(bound, ax.space)
#            x, y = xy.T
#            lines.append(ax.plot(x, y, fmt, **kwargs))
#                
#                
#    return lines



def rbf_density_colormesh(ax, ngrid=500, **kwargs):
    xmin, xmax = ax.get_xlim()
    ymin, ymax = ax.get_ylim()
    
    x = np.linspace(xmin, xmax, ngrid, endpoint=True)
    y = np.linspace(ymin, ymax, ngrid, endpoint=True)
    X, Y = np.meshgrid(x, y)
    
    XY = np.vstack((X.flatten(), Y.flatten())).T
    z = ax.sample_box.sample_pdf(XY, ax.space)
    Z = z.reshape(ngrid, ngrid)
    
    #č s tou alphou mně to nějak nepovedlo
    #č matplotlib ji nějak ignoruje 
    #č a podle toho, co vidím v kódu
    #č není to problém kolormapy LinearSegmentedColormap
#    cdict = {'red':[[0.0,  253/255, 253/255],
#                   [0.9999,  253/255, 167/255],
#                   [1.0,  167/255, 167/255]],
#         'green': [[0.0,  193/255, 193/255],
#                   [0.9999,  193/255, 1.0],
#                   [1.0,  1.0, 1.0]],
#         'blue':  [[0.0,  197/255, 197/255],
#                   [0.9999,  197/255, 181/255],
#                   [1.0,  181/255, 181/255]],
#         'alpha':  [[0.0,  1.0, 1.0],
#                   [0.9999,  1.0, 0.2],
#                   [1.0,  0.2, 0.2]]}
    
    cdict = {'red':[[0.0,  1.0, 1.0],
                   [0.99999,  253/255, 167/255],
                   [1.0,  167/255, 167/255]],
         'green': [[0.0,  1.0, 1.0],
                   [0.99999,  0/255, 1],
                   [1.0,  1.0, 1.0]],
         'blue':  [[0.0,  1.0, 1.0],
                   [0.99999,  17/255, 181/255],
                   [1.0,  181/255, 181/255]]}
                   

    cmap = mcolor.LinearSegmentedColormap('red_density', segmentdata=cdict, N=2560)
    #cmap = mcolors.ListedColormap(['#A7FFB5', '#FDC1C5'])
    rbf_values = wmisc.RBF_surrogate(ax.sample_box, ax.space).rbf(X, Y)
    #Z = np.log(Z/np.max(Z[rbf_values <= 0]))
    #C = -Z/np.min(Z) * (rbf_values <= 0) + 1/250 * (rbf_values > 0)
    Z = Z / np.max(Z[rbf_values <= 0])
    C = (np.sqrt(Z)-1) * (rbf_values <= 0) + 1/250 * (rbf_values > 0)
    return ax.pcolormesh(X, Y, C, cmap=cmap, shading='nearest', edgecolors='face',
                        zorder=-100, rasterized=True, **kwargs)
    

def rbf_colormesh(ax, ngrid=500, **kwargs):
    xmin, xmax = ax.get_xlim()
    ymin, ymax = ax.get_ylim()
    
    x = np.linspace(xmin, xmax, ngrid, endpoint=True)
    y = np.linspace(ymin, ymax, ngrid, endpoint=True)
    X, Y = np.meshgrid(x, y)

    cmap = mcolor.ListedColormap(['#A7FFB5', '#FDC1C5'])
    rbf_values = wmisc.RBF_surrogate(ax.sample_box, ax.space).rbf(X, Y)
    C = rbf_values < 0
    return ax.pcolormesh(X, Y, C, cmap=cmap, shading='nearest', zorder=-100, rasterized=True, **kwargs)


def gcircle(ax, r=1, nrod=200, **kwargs):
    if ax.space == 'G':
        circle = mpatches.Circle((0,0), r, **kwargs)
    else:
        phi = np.linspace(0, 6.283185307, nrod, endpoint=True)
        cos_phi = np.cos(phi)
        sin_phi = np.sin(phi)
        
        sample_G = np.array((cos_phi, sin_phi)).T * r

        f_model = ax.sample_box.f_model
        sample = f_model.new_sample(sample_G, space='G', extend=True)
        xy = getattr(sample, ax.space)[:,:2]
        circle = mpatches.Polygon(xy, **kwargs)
    
    #č vrací add_patch něco?
    return ax.add_patch(circle)


def uframe(ax, **kwargs):
    if ax.space in ('P', 'aP', 'U', 'aU'):
        alpha = ax.sample_box.alpha
        frame = mpatches.Rectangle((0,0), alpha[0], alpha[1], fill=False, **kwargs)
        return ax.add_patch(frame) 



def isocurves(ax, ngrid=200, limits=None, ncurves=5, **kwargs):
    if limits is None:
        #xmin, xmax = ax.get_xlim()
        #ymin, ymax = ax.get_ylim()
        
        sample_G = np.array([[-ncurves, -ncurves], [ncurves, ncurves]])
        sample = ax.sample_box.f_model.new_sample(sample_G, space='G', extend=True)
        xy = getattr(sample, ax.space)[:,:2]
        xmin, ymin = np.min(xy, axis=0)
        xmax, ymax = np.max(xy, axis=0)
        
    else: # G-čko zlobí
        xmin, xmax, ymin, ymax = limits
    
    
    
    x = np.linspace(xmin, xmax, ngrid)
    y = np.linspace(ymin, ymax, ngrid)
    X, Y = np.meshgrid(x, y)
    XY = np.vstack((X.flatten(), Y.flatten())).T
    Z = ax.sample_box.f_model.sample_pdf(XY, ax.space)
    
    
    const = 1 / (xmax - xmin) / (ymax - ymin)
    r_levels = np.arange(ncurves) + 1
    levels = wmisc.isolevels_2d(Z, const, np.flip(r_levels), from_top=False)
    return ax.contour(X, Y, Z.reshape(ngrid, ngrid), levels, **kwargs)



def number_points(ax, **kwargs):
    points_coordinates = getattr(ax.sample_box, ax.space)[:,:2]
    x, y = points_coordinates.T
    labels = []
    for i in range(ax.sample_box.nsim):
        labels.append(ax.text(x[i], y[i], str(i+1), **kwargs))
    return labels


def center_spines(ax, lw=0.4):
    # Move the left and bottom spines to x = 0 and y = 0, respectively.
    ax.spines["left"].set_position(("data", 0))
    ax.spines["bottom"].set_position(("data", 0))
    
    # Show the left and bottom spines
    ax.spines["left"].set_visible(True)
    ax.spines["bottom"].set_visible(True)
    
    # Set up linewidth
    ax.spines["left"].set_linewidth(lw)
    ax.spines["bottom"].set_linewidth(lw)
    
    # Hide the top and right spines.
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)
    
    # instead of black triangles ">k"/"^k"
    vertices = np.array([[0, 1], [5, 0], [0, -1], [0, 1]])
    right_arrow = {
            'marker': mpath.Path(vertices, codes=None, closed=True),
            'markerfacecolor': 'black',
            'markeredgecolor': 'black',
            'markersize': 15
            }
    
    vertices = np.array([[-1, 0], [0, 5], [1, 0], [-1, 0]])
    up_arrow = {
            'marker': mpath.Path(vertices, codes=None, closed=True),
            'markerfacecolor': 'black',
            'markeredgecolor': 'black',
            'markersize': 15
            }
    
    # Draw arrows (as markers) at the end of the axes.  In each
    # case, one of the coordinates (0) is a data coordinate (i.e., y = 0 or x = 0,
    # respectively) and the other one (1) is an axes coordinate (i.e., at the very
    # right/top of the axes).  Also, disable clipping (clip_on=False) as the marker
    # actually spills out of the axes.
    ax.plot(1, 0, **right_arrow, transform=ax.get_yaxis_transform(), clip_on=False)
    ax.plot(0, 1, **up_arrow, transform=ax.get_xaxis_transform(), clip_on=False)

#č před použitím bude třeba skutečně naimportovat ticker
def fix_locator(ax, loc):
    loc_x = mpl.ticker.FixedLocator(loc)
    ax.xaxis.set_major_locator(loc_x)
    loc_y = mpl.ticker.FixedLocator(loc)
    ax.yaxis.set_major_locator(loc_y)

#č něco_kulatého
def curly(ax, linewidths=[0.7, 0.5, 0.4, 0.3, 0.2, 0.1], nrid=200, color='k', **kwargs):
    if ax.space in ('U', 'aU'):
        return None
        
    elif (ax.sample_box.nvar==2) and (ax.space in ('Rn', 'aRn', 'R', 'aR', 'P', 'aP')):
        isocurves(ax, ngrid=nrid, limits=None, ncurves=len(linewidths),\
                     linewidths=np.flip(linewidths), colors=[color], **kwargs)
        
    else:
        for i, lw in zip(range(len(linewidths)), linewidths):
            gcircle(ax, r=i+1, nrod=nrid, color=color, linewidth=lw, fill=False)


def setup(ax, lw=0.4): #č šup
    #ax.set_xlabel('$x_{1}$')
    #ax.set_ylabel('$x_{2}$')
    
    #ax.set_frame_on(False) #č pak se mi nezobrazí osy
    ax.set_aspect(1)
    #ax.set_box_aspect(1)
    if ax.space in ('P', 'aP', 'U', 'aU'):
        ax.margins(0)
        #ax.set_frame_on(False)
        #uframe(ax, linewidth=lw) 
    else:
        center_spines(ax, lw)


def setup_labels(ax, x_label="$x_1$", y_label="$x_2~$", data_offset=0.5):
    if ax.space in ('P', 'aP', 'U', 'aU'):
        ax.set_xlabel(x_label)
        ax.set_ylabel(y_label)
    else:
        text = ax.text(1, -data_offset, x_label, ha='center',va='top', transform=ax.get_yaxis_transform())
        text.set_in_layout(False)
        text = ax.text(-data_offset, 1, y_label, ha='right',va='center', transform=ax.get_xaxis_transform())
        text.set_in_layout(False)




Mode Type Size Ref File
100644 blob 28117 0907e38499eeca10471c7d104d4b4db30b8b7084 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 72 458b7e2ca46acd9ec0d2caf3cc4d72e515bb73dc __main__.py
100644 blob 73368 3d245b8568158ac63c80fa0847631776a140db0f blackbox.py
100644 blob 11243 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d candybox.py
100644 blob 29927 066a2d10ea1d21daa6feb79fa067e87941299ec4 convex_hull.py
100644 blob 102979 76afe27f4912a9cd333224484081a2f8f5f15096 dicebox.py
100644 blob 36930 a775d1114bc205bbd1da0a10879297283cca0d4c estimation.py
100644 blob 34394 3f0ab9294a9352a071de18553aa687c2a9e6917a f_models.py
100644 blob 35721 3daee87ec0bc670207356490e16f200fed0d4fc4 g_models.py
100644 blob 20908 457329fe567f1c0a9950c21c7c494cccf38193cc ghull.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 29393 96162a5d181b8307507ba2f44bafe984aa939163 lukiskon.py
100644 blob 2888 0c4303f8865b4861382119d77147f227958f2aec misc.py
040000 tree - e83032b6b83795f53d85ba08eb565f1e82d19951 mplot
100644 blob 1462 437b0d372b6544c74fea0d2c480bb9fd218e1854 plot.py
100644 blob 2807 1feb1d43e90e027f35bbd0a6730ab18501cef63a plotly_plot.py
040000 tree - bfb2adfd17a5c916d2a132e2607f57f14561559e qt_gui
100644 blob 8566 5c8f8cc2a34798a0f25cb9bf50b5da8e86becf64 reader.py
100644 blob 4284 a0e0b4e593204ff6254f23a67652804db07800a6 samplebox.py
100644 blob 6558 df0e88ea13c95cd1463a8ba1391e27766b95c3a5 sball.py
100644 blob 6739 0b6f1878277910356c460674c04d35abd80acf13 schemes.py
100644 blob 76 11b2fde4aa744a1bc9fa1b419bdfd29a25c4d3e8 shapeshare.py
100644 blob 54884 fbe116dab4fc19bb7568102de21f53f15a8fc6bf simplex.py
100644 blob 13090 2b9681eed730ecfadc6c61b234d2fb19db95d87d spring.py
100644 blob 10953 da8a8aaa8cac328ec0d1320e83cb802b562864e2 stm_df.py
040000 tree - 257d3de26ca92fafda012c78bccbd1e3ae01824c testcases
100644 blob 2465 d829bff1dd721bdb8bbbed9a53db73efac471dac welford.py
100644 blob 25318 fcdabd880bf7199783cdb9c0c0ec88c9813a5b18 whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main