Subject | Hash | Author | Date (UTC) |
---|---|---|---|
ccnnv9 leaky relu | 5fd462122ef62498a51dd83db2c89507254d7a96 | Thai Thien | 2020-06-13 04:40:41 |
CompactCNNv9 leaky relu | 03e5f342cc6eb3ba4fd0b98061398acedde6ab54 | Thai Thien | 2020-06-13 04:36:43 |
train script | ad55dbff34ffab8cffd068536c4d2f2b57a487ee | Thai Thien | 2020-06-13 04:17:21 |
add L1Mean, add experiment tag on cometml | 125f03f6f136bde9fa11b00a749b8a0c3de51534 | Thai Thien | 2020-06-13 04:15:30 |
msenone | f68f48cc1a2e28a65da368a9a66ebec9f8694467 | Thai Thien | 2020-06-13 03:54:44 |
train script | 2b142c16cce5403d0d673077d2b1e442af072e42 | Thai Thien | 2020-06-12 16:42:25 |
train script | 67923fc98cd4f82880e973f7dbf143c09ffcf8e8 | Thai Thien | 2020-06-12 16:01:59 |
ccnnv8 adam t1 sha, H3 | 0cab419a2c9747611347b6ddb75ca8a5cb20eb79 | Thai Thien | 2020-06-11 16:21:47 |
ccnv8 adam t1 shb | edd704f19c3d58d959c13b96100498c8809b309c | Thai Thien | 2020-06-11 15:51:21 |
ccnnv8 | 4e8e6e864c3f2fea80a3b61addbc26eb8f3ae059 | Thai Thien | 2020-06-11 15:47:04 |
bigtail7 cuda4 | fdde3eb95706e95cdc0e8d81f93f2e08036d3192 | Thai Thien | 2020-06-11 15:45:38 |
train script, bigtail6, bigtail7 shb | ea5758dcd7d8428e694cc84d50c81267eabcef23 | Thai Thien | 2020-06-11 15:36:54 |
WIP | 3d7e1f10700c05bf7672cbf46ae6cafae8f2330f | Thai Thien | 2020-06-11 13:07:18 |
return x | c750d65fe266979e9cdebf9a53b2af343462fbda | Thai Thien | 2020-06-11 12:39:13 |
bigtail5 | b750f0037993fdfdda6433b1982f5612d13aa1a6 | Thai Thien | 2020-06-11 12:32:28 |
adam t3 t4 | 933528ca8870affc741e989520172819382db0c0 | Thai Thien | 2020-06-10 07:59:26 |
adam t1 and adam t2 | 4202f1b609dc90197990e014addce68a04d0b8a8 | Thai Thien | 2020-06-09 15:23:49 |
t8 | 2dda6cd71a7aa50e760dfdcdfbdcdedfce36b836 | Thai Thien | 2020-06-09 15:12:20 |
t7 | 2ff8d0931ae51a93915721202aaa17c38c2918cc | Thai Thien | 2020-06-09 15:08:32 |
t5 t6 | 7eeeb38e47fc4b59750438d66c911a7a93573b91 | Thai Thien | 2020-06-09 14:53:05 |
File | Lines added | Lines deleted |
---|---|---|
models/compact_cnn.py | 46 | 0 |
train_script/adam_stuff/ccnnv9_adam_t1_sha.sh | 6 | 4 |
train_script/adam_stuff/ccnnv9_adam_t2_sha.sh | 6 | 6 |
File models/compact_cnn.py changed (mode: 100644) (index f8e9e2b..2976589) | |||
... | ... | class CompactCNNV7(nn.Module): | |
134 | 134 | return x | return x |
135 | 135 | ||
136 | 136 | ||
137 | class CompactCNNV9(nn.Module): | ||
138 | """ | ||
139 | A REAL-TIME DEEP NETWORK FOR CROWD COUNTING | ||
140 | https://arxiv.org/pdf/2002.06515.pdf | ||
141 | """ | ||
142 | def __init__(self, load_weights=False): | ||
143 | super(CompactCNNV8, self).__init__() | ||
144 | self.model_note = "CCNNv7 but use leaky relu" | ||
145 | self.red_cnn = nn.Conv2d(3, 10, 9, padding=4) | ||
146 | self.green_cnn = nn.Conv2d(3, 14, 7, padding=3) | ||
147 | self.blue_cnn = nn.Conv2d(3, 16, 5, padding=2) | ||
148 | self.c0 = nn.Conv2d(40, 40, 3, padding=1) | ||
149 | |||
150 | self.max_pooling = nn.MaxPool2d(kernel_size=2, stride=2) | ||
151 | |||
152 | self.c1 = nn.Conv2d(40, 60, 3, padding=1) | ||
153 | self.c2 = nn.Conv2d(60, 40, 3, padding=1) | ||
154 | self.c3 = nn.Conv2d(40, 20, 3, padding=1) | ||
155 | self.c4 = nn.Conv2d(20, 10, 3, padding=1) | ||
156 | self.output = nn.Conv2d(10, 1, 1) | ||
157 | |||
158 | def forward(self,x): | ||
159 | x_red = F.leaky_relu(self.red_cnn(x), inplace=True) | ||
160 | x_green = F.leaky_relu(self.green_cnn(x), inplace=True) | ||
161 | x_blue = F.leaky_relu(self.blue_cnn(x), inplace=True) | ||
162 | |||
163 | x = torch.cat((x_red, x_green, x_blue), 1) | ||
164 | |||
165 | x = self.max_pooling(x) | ||
166 | x = F.leaky_relu(self.c0(x), inplace=True) | ||
167 | |||
168 | x = F.leaky_relu(self.c1(x), inplace=True) | ||
169 | |||
170 | x = F.leaky_relu(self.c2(x), inplace=True) | ||
171 | x = self.max_pooling(x) | ||
172 | |||
173 | x = F.leaky_relu(self.c3(x), inplace=True) | ||
174 | x = self.max_pooling(x) | ||
175 | |||
176 | x = F.leaky_relu(self.c4(x), inplace=True) | ||
177 | |||
178 | x = self.output(x) | ||
179 | return x | ||
180 | |||
181 | |||
182 | |||
137 | 183 | class CompactCNNV8(nn.Module): | class CompactCNNV8(nn.Module): |
138 | 184 | """ | """ |
139 | 185 | A REAL-TIME DEEP NETWORK FOR CROWD COUNTING | A REAL-TIME DEEP NETWORK FOR CROWD COUNTING |
File train_script/adam_stuff/ccnnv9_adam_t1_sha.sh copied from file train_script/meow_one/big_tail/bigtail3_t9_sha.sh (similarity 73%) (mode: 100644) (index e3a7ddb..ce78088) | |||
1 | task="bigtail3_t9_sha" | ||
1 | task="ccnnv9_adam_t1_sha.sh" | ||
2 | 2 | ||
3 | 3 | CUDA_VISIBLE_DEVICES=4 OMP_NUM_THREADS=2 PYTHONWARNINGS="ignore" HTTPS_PROXY="http://10.60.28.99:86" nohup python experiment_main.py \ | CUDA_VISIBLE_DEVICES=4 OMP_NUM_THREADS=2 PYTHONWARNINGS="ignore" HTTPS_PROXY="http://10.60.28.99:86" nohup python experiment_main.py \ |
4 | 4 | --task_id $task \ | --task_id $task \ |
5 | --note "bigtail3 L1 hope better than baseline" \ | ||
6 | --model "BigTail3" \ | ||
5 | --note "leaky relu" \ | ||
6 | --model "CompactCNNV8" \ | ||
7 | 7 | --input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | --input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ |
8 | 8 | --lr 1e-4 \ | --lr 1e-4 \ |
9 | 9 | --decay 1e-4 \ | --decay 1e-4 \ |
10 | --loss_fn "L1" \ | ||
10 | --loss_fn "MSEMean" \ | ||
11 | 11 | --skip_train_eval \ | --skip_train_eval \ |
12 | --batch_size 1 \ | ||
13 | --optim "adam" \ | ||
12 | 14 | --datasetname shanghaitech_crop_random \ | --datasetname shanghaitech_crop_random \ |
13 | 15 | --epochs 1200 > logs/$task.log & | --epochs 1200 > logs/$task.log & |
14 | 16 |
File train_script/adam_stuff/ccnnv9_adam_t2_sha.sh copied from file train_script/adam_stuff/ccnn_adam_t4_sha.sh (similarity 74%) (mode: 100644) (index 34cb92f..53bb1f6) | |||
1 | task="ccnn_adam_t4_sha" | ||
1 | task="ccnnv9_adam_t2_sha.sh" | ||
2 | 2 | ||
3 | 3 | CUDA_VISIBLE_DEVICES=5 OMP_NUM_THREADS=2 PYTHONWARNINGS="ignore" HTTPS_PROXY="http://10.60.28.99:86" nohup python experiment_main.py \ | CUDA_VISIBLE_DEVICES=5 OMP_NUM_THREADS=2 PYTHONWARNINGS="ignore" HTTPS_PROXY="http://10.60.28.99:86" nohup python experiment_main.py \ |
4 | 4 | --task_id $task \ | --task_id $task \ |
5 | --note "adam lr and decay, 8" \ | ||
6 | --model "CompactCNNV7" \ | ||
5 | --note "leaky relu" \ | ||
6 | --model "CompactCNNV8" \ | ||
7 | 7 | --input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | --input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ |
8 | --lr 1e-6 \ | ||
9 | --decay 1e-6 \ | ||
10 | --loss_fn "MSEMean" \ | ||
8 | --lr 1e-4 \ | ||
9 | --decay 1e-4 \ | ||
10 | --loss_fn "L1Mean" \ | ||
11 | 11 | --skip_train_eval \ | --skip_train_eval \ |
12 | 12 | --batch_size 1 \ | --batch_size 1 \ |
13 | 13 | --optim "adam" \ | --optim "adam" \ |