Subject | Hash | Author | Date (UTC) |
---|---|---|---|
no more lr scheduler | 7289adb41de7807258eb8c29e6108fa65f59525a | Thai Thien | 2020-03-06 19:35:49 |
reduce learning rate | bc8241e5b88b91c18bb7999a8d5d12fc79a5e3f7 | Thai Thien | 2020-03-06 19:28:27 |
dilated ccnn | 5c5d92bdc0a288dd5d4ec5f1367d8cb928175bbe | Thai Thien | 2020-03-06 19:04:01 |
done | 9f05e093ec7c10284a4aedf0738f9e61d5ac6fb6 | Thai Thien | 2020-03-06 18:02:34 |
with lr scheduler | 466c364b60ed22c77319b14ccc9a201614b908bf | Thai Thien | 2020-03-04 17:57:49 |
train with learning rate scheduler | fcd5a3c8da2dd6763e0d40742edf47b49c95fcfb | Thai Thien | 2020-03-04 17:55:11 |
ccnn no padding at output layer | 57563fc07f656c63f807de4d80712ff11345109d | Thai Thien | 2020-03-04 17:36:43 |
fix dimension of ccnn | f4439d9a78273ab3ba450f31a528509816b4352f | Thai Thien | 2020-03-04 17:32:48 |
ready to train | dbe0d6c3271dbb22490f0877fa31ba9cd7852b99 | Thai Thien | 2020-03-04 15:55:05 |
done implement c-cnn | 2deecef953baf1e07ce5cf5477d208bc7ffa34cf | Thai Thien | 2020-03-03 17:25:03 |
fix script | 0e9d372b9ad60b32939f1e558b2a59fc7d518fa2 | Thai Thien | 2020-03-02 16:23:55 |
simple v3 to 91 epoch | 539fdd03c3e3497fd22b7db2aaa14f067cbf6f8d | Thai Thien | 2020-03-02 16:09:43 |
we train on all training data and validate on test data | 9407ef8d5b7c47c53d6f98dcb3c20208aad1d7a9 | Thai Thien | 2020-03-01 15:36:46 |
load and continue train v3 | 12421fb7330e5c9d2eed4f6e574dfe69bdfddefc | Thai Thien | 2020-03-01 14:50:01 |
add env file | b1ed02088b01af42efc8d6963b3699e0a5c31c01 | Thai Thien | 2020-03-01 11:10:56 |
sanity check dataloader | 034daa8bef69daff92891cc42b988a6c77b010f9 | Thai Thien | 2020-03-01 10:24:38 |
print train loader len | eef3995f63a631e0ec5d92e31f5d7db27fd04401 | Thai Thien | 2020-03-01 05:17:55 |
simple v3 t1 | 9ee69fce793709c3dcc692de73ddb9d01c54670e | Thai Thien | 2020-03-01 05:08:40 |
try fix load model not training | a9d6dc79a460f15bd34bc7c6a4e1359209f59f27 | Thai Thien | 2020-03-01 05:04:48 |
continue training for attn can adcrowdnet simple | 437fe77a4f50b6c6098a5251dbb42be74d8cdfc4 | Thai Thien | 2020-03-01 04:40:18 |
File | Lines added | Lines deleted |
---|---|---|
train_custom_compact_cnn.py | 3 | 3 |
train_script/CCNN_custom/dilated_ccnn_v1_t2.sh | 0 | 16 |
train_script/CCNN_custom/dilated_ccnn_v1_t3.sh | 25 | 0 |
File train_custom_compact_cnn.py copied from file train_compact_cnn.py (similarity 98%) (mode: 100644) (index 1876089..7c5d235) | |||
... | ... | from visualize_util import get_readable_time | |
9 | 9 | ||
10 | 10 | import torch | import torch |
11 | 11 | from torch import nn | from torch import nn |
12 | from models import CompactCNN | ||
12 | from models import CompactDilatedCNN | ||
13 | 13 | import os | import os |
14 | 14 | ||
15 | |||
16 | 15 | if __name__ == "__main__": | if __name__ == "__main__": |
17 | 16 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
18 | 17 | print(device) | print(device) |
... | ... | if __name__ == "__main__": | |
40 | 39 | print("len train_loader ", len(train_loader)) | print("len train_loader ", len(train_loader)) |
41 | 40 | ||
42 | 41 | # model | # model |
43 | model = CompactCNN() | ||
42 | model = CompactDilatedCNN() | ||
44 | 43 | model = model.to(device) | model = model.to(device) |
45 | 44 | ||
46 | 45 | # loss function | # loss function |
... | ... | if __name__ == "__main__": | |
49 | 48 | optimizer = torch.optim.Adam(model.parameters(), args.lr, | optimizer = torch.optim.Adam(model.parameters(), args.lr, |
50 | 49 | weight_decay=args.decay) | weight_decay=args.decay) |
51 | 50 | ||
51 | |||
52 | 52 | trainer = create_supervised_trainer(model, optimizer, loss_fn, device=device) | trainer = create_supervised_trainer(model, optimizer, loss_fn, device=device) |
53 | 53 | evaluator = create_supervised_evaluator(model, | evaluator = create_supervised_evaluator(model, |
54 | 54 | metrics={ | metrics={ |
File train_script/CCNN_custom/dilated_ccnn_v1_t2.sh deleted (index 532d60f..0000000) | |||
1 | #CUDA_VISIBLE_DEVICES=5 nohup python train_custom_compact_cnn_lrscheduler.py \ | ||
2 | #--task_id dilated_ccnn_v1_t1 \ | ||
3 | #--input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | ||
4 | #--lr 1e-4 \ | ||
5 | #--decay 5e-4 \ | ||
6 | #--datasetname shanghaitech \ | ||
7 | #--epochs 400 > logs/dilated_ccnn_v1_t1.log & | ||
8 | |||
9 | |||
10 | CUDA_VISIBLE_DEVICES=5 nohup python train_custom_compact_cnn_lrscheduler.py \ | ||
11 | --task_id dilated_ccnn_v1_t2 \ | ||
12 | --input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | ||
13 | --lr 1e-5 \ | ||
14 | --decay 5e-4 \ | ||
15 | --datasetname shanghaitech \ | ||
16 | --epochs 400 > logs/dilated_ccnn_v1_t2.log & |
File train_script/CCNN_custom/dilated_ccnn_v1_t3.sh added (mode: 100644) (index 0000000..5036ae5) | |||
1 | #CUDA_VISIBLE_DEVICES=5 nohup python train_custom_compact_cnn_lrscheduler.py \ | ||
2 | #--task_id dilated_ccnn_v1_t1 \ | ||
3 | #--input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | ||
4 | #--lr 1e-4 \ | ||
5 | #--decay 5e-4 \ | ||
6 | #--datasetname shanghaitech \ | ||
7 | #--epochs 400 > logs/dilated_ccnn_v1_t1.log & | ||
8 | |||
9 | |||
10 | #CUDA_VISIBLE_DEVICES=5 nohup python train_custom_compact_cnn_lrscheduler.py \ | ||
11 | #--task_id dilated_ccnn_v1_t2 \ | ||
12 | #--input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | ||
13 | #--lr 1e-5 \ | ||
14 | #--decay 5e-4 \ | ||
15 | #--datasetname shanghaitech \ | ||
16 | #--epochs 400 > logs/dilated_ccnn_v1_t2.log & | ||
17 | |||
18 | |||
19 | CUDA_VISIBLE_DEVICES=5 nohup python train_custom_compact_cnn.py \ | ||
20 | --task_id dilated_ccnn_v1_t3 \ | ||
21 | --input /data/rnd/thient/thient_data/ShanghaiTech/part_A \ | ||
22 | --lr 1e-6 \ | ||
23 | --decay 5e-5 \ | ||
24 | --datasetname shanghaitech \ | ||
25 | --epochs 400 > logs/dilated_ccnn_v1_t3.log & |