Subject | Hash | Author | Date (UTC) |
---|---|---|---|
psnr abs 255 | ffaf76a25ca6c15ed8d36a77c21bd6d9278ab690 | Thai Thien | 2020-12-06 16:40:51 |
normalize 255 | d4e37756c87bb32afdd34ee368e0b5e826b9901f | Thai Thien | 2020-12-06 16:38:02 |
normalize y and y_pred | 2d66ee480bf65be75533e6ee1d8e0c30f781d4c8 | Thai Thien | 2020-12-06 16:34:44 |
x | b887624be4145f94800867033574b65e597de963 | Thai Thien | 2020-12-06 16:32:49 |
no more abs and stuff | 2c670747b22280596bd10aa37508405e7b94f05c | Thai Thien | 2020-12-06 16:31:58 |
self calculate psnr | 384da4f7f346e1e984aa4cd7698cc3627c374dba | Thai Thien | 2020-12-06 16:27:42 |
let max value is y_max | eef482d4f6b13eb78db9f4b32a6fd72501b0aeaf | Thai Thien | 2020-12-06 16:18:59 |
now we add data range as max value | cc50e0216660bd609bb562085a1c3011cadc8935 | Thai Thien | 2020-12-06 16:10:27 |
add max value | c6788b7e84722619775990f1bf9c57493768c309 | Thai Thien | 2020-12-06 16:06:10 |
try to rig ssim to mae to see how it work | 0881597408f3531982df43a1503a193c4874bcfa | Thai Thien | 2020-12-06 16:02:02 |
try remove padding | 0f1f913d8f99210f2f53309ac44c71ed9baf0b76 | Thai Thien | 2020-12-06 15:46:46 |
a | 147a73727888e4bbcd3584fb32ae60a62b43b77a | Thai Thien | 2020-12-06 15:41:18 |
reduction = sum | caaf7ea2f013097c2d0275a3c49bffb6ae7e4b69 | Thai Thien | 2020-12-06 15:40:13 |
cuda() and we fix | 41f49e7aa28595cb6438519dddb5e17434a44d3e | Thai Thien | 2020-12-06 15:34:53 |
minor fix 138 | 6178f63cb061ec7086a1748a8e9d4f4a03ea96e5 | Thai Thien | 2020-12-06 15:33:08 |
fix measure ssim psnr | 88bb9b78e8ae45199074aa1076b15c73f13e6cb6 | Thai Thien | 2020-12-06 15:30:58 |
print y and y_pred shape | 90ab90465dabc4bd1171f4500eb01c45cca97420 | Thai Thien | 2020-12-06 15:23:09 |
ccnn baseline | f02c3084f28f811879e36e9a309993d468535dc3 | Thai Thien | 2020-12-06 15:08:11 |
ccnn shb and sha | d1d4152ada2c5dfc18c65299f32cb12935b90fe4 | Thai Thien | 2020-12-06 14:46:36 |
sha | 3196ece275027e4d032a0bddb84ce310c15f2380 | Thai Thien | 2020-12-06 13:46:28 |
File | Lines added | Lines deleted |
---|---|---|
crowd_counting_error_metrics.py | 5 | 5 |
File crowd_counting_error_metrics.py changed (mode: 100644) (index 7d35ee3..e90567c) | |||
... | ... | class CrowdCountingMeanPSNRabs(Metric): | |
195 | 195 | # self calculate | # self calculate |
196 | 196 | y = y/torch.max(y)*255 | y = y/torch.max(y)*255 |
197 | 197 | y_pred = y_pred / torch.max(y_pred) * 255 | y_pred = y_pred / torch.max(y_pred) * 255 |
198 | EPS = 1e-20 | ||
199 | mse = torch.mean((y_pred - y) ** 2, dim=[2, 3]) | ||
200 | score = - 10 * torch.log10(mse + EPS) | ||
201 | psnr_metric = score | ||
202 | |||
198 | # EPS = 1e-20 | ||
199 | # mse = torch.mean((y_pred - y) ** 2, dim=[2, 3]) | ||
200 | # score = - 10 * torch.log10(mse + EPS) | ||
201 | # psnr_metric = score | ||
202 | psnr_metric = piq.psnr(y, y_pred, 255, "sum") | ||
203 | 203 | self._sum += psnr_metric.item() | self._sum += psnr_metric.item() |
204 | 204 | # we multiply because ssim calculate mean of each image in batch | # we multiply because ssim calculate mean of each image in batch |
205 | 205 | # we multiply so we will divide correctly | # we multiply so we will divide correctly |