Subject | Hash | Author | Date (UTC) |
---|---|---|---|
convex_hull.Ghull: try to outthink OS's memory management | 116444dc08cc0261e149de02f21f14f74dc8816b | I am | 2021-04-25 08:02:25 |
convex_hull.Ghull: in case of memory error divide ns by 3 | 0f629139f7926107b0b4eeb55452e745a2c23487 | I am | 2021-04-25 06:50:02 |
convex_hull: memory failsafe integration | 7624e4b81526d3944f1a5ac74d298dee792c3085 | I am | 2021-04-24 08:06:27 |
simplex: delete ghull-related stuff (moved to convex_hull module already) | f514adf959a9a2a9b7806b3cde81f78faf04539d | I am | 2021-04-19 17:04:54 |
convex_hull.QHull: change enough_points into property | ae4f9b4d70bb43556874bc6d698cb1cc09ad9430 | I am | 2021-04-19 17:02:35 |
qt_plot: add support for "just nodes" | da0e307ab0a21e565031789260a9160c5ff1b011 | I am | 2021-04-19 07:33:12 |
sball.Shell.rvs(): inverse linspace (wouldn't produce NaNs) | 58452888a47230ab30c56bc33f5e3c780e60c752 | I am | 2021-04-18 03:26:21 |
convex_hull: move QHull from simplex module | e5c67ce54fa4c9f3ce15714ebeff7d363d918494 | I am | 2021-04-17 19:04:00 |
schemes: comment out dups | 8d22480a42926c3a78e62a07be4418e1f8ba350f | I am | 2021-04-16 23:35:53 |
convex_hull: split DirectHull into simplified DirectHull itself and CompleteHull | b109bbdc325a2a88bf22e9893fa162690bf190f9 | I am | 2021-04-16 23:26:03 |
rework convex hull | 60185dce0403ba941e849a60b5e43da6ce1fffd4 | I am | 2021-04-12 17:09:25 |
sball: add .get_random_directions() function | d41131f28937e40eb853a30047de3cfc43cf5fa8 | I am | 2021-03-24 03:24:41 |
mplot: plot2D swithed to matplotlib | 366326fb53bcbc54d7e6fb108b9dc256833bf679 | I am | 2021-03-18 01:44:07 |
three-ways image WIP | a2987cde393c4e795342f6dc40d5920760b468d4 | I am | 2021-03-17 16:37:18 |
Ghull is ready | e1a49fe0cb390ce9664e8f892c1da6d30231cc99 | I am | 2021-03-16 14:29:09 |
simplex: finish Ghull | 5cb6d06a1c77cdb0cc1d3e83cfb217924b2345f1 | I am | 2021-03-03 23:06:13 |
simplex.Ghull: WIP | 043724e7d4fe0c25ac698becf6498bc2abb8bf29 | I am | 2021-03-03 17:06:08 |
sball: je naimplementována třída Shell | b335ba64be48582ca2f31baf035d0f5c6c75090c | I am | 2021-03-03 13:45:02 |
sball: new gamma-based solution. Keep the old version as well | b6ac51b6b08ca2e7d5c398fa56c5a9a0832ab301 | I am | 2021-02-24 10:55:11 |
mart: add convergence plot | 85a9ef727d15fc6567b7b0a594ed52cef9fe5680 | I am | 2021-02-22 23:32:34 |
File | Lines added | Lines deleted |
---|---|---|
convex_hull.py | 11 | 1 |
File convex_hull.py changed (mode: 100644) (index 9ffcd21..5d4a8f5) | |||
... | ... | class QHull: | |
547 | 547 | # convex_hull_estimation -2: inside, -1: outside | # convex_hull_estimation -2: inside, -1: outside |
548 | 548 | # shell_estimation -22: inner, -3: shell, -11: outer | # shell_estimation -22: inner, -3: shell, -11: outer |
549 | 549 | # ghull_estimation -22: inner, -21: shell inside, -12: shell outside, -11: outer | # ghull_estimation -22: inner, -21: shell inside, -12: shell outside, -11: outer |
550 | |||
551 | try: # try to outthink f****** OS's memory management | ||
552 | import os | ||
553 | mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') | ||
554 | except BaseException as e: | ||
555 | print("convex_hull failed to get amount of RAM availiable", repr(e)) | ||
556 | mem_bytes = 16 * 1024**3 # hello, Windows! | ||
557 | |||
550 | 558 | class Ghull: | class Ghull: |
551 | 559 | def __init__(self, hull, design=None): | def __init__(self, hull, design=None): |
552 | 560 | self.hull = hull | self.hull = hull |
... | ... | class Ghull: | |
621 | 629 | ||
622 | 630 | nsampled = 0 | nsampled = 0 |
623 | 631 | nfailed = 0 | nfailed = 0 |
632 | bus = int(mem_bytes / self.hull.nsimplex / 8 / 2) + 1 | ||
624 | 633 | while nsampled < nis: | while nsampled < nis: |
625 | seats = min(nis - nsampled, self.integration_cutoff) | ||
634 | |||
635 | seats = min(nis - nsampled, self.integration_cutoff, bus) | ||
626 | 636 | try: | try: |
627 | 637 | nodes_G = self.shell.rvs(seats) | nodes_G = self.shell.rvs(seats) |
628 | 638 | nodes = self.sample.f_model.new_sample(nodes_G, space='G') | nodes = self.sample.f_model.new_sample(nodes_G, space='G') |