Subject | Hash | Author | Date (UTC) |
---|---|---|---|
mplot.mgraph: hračky s legendou | 198cc40947d48b2a3cde990254def7d57c1535a6 | I am | 2022-01-05 09:04:23 |
mplot: apply default settings to figures | 765d830e0230b3d85f079eb26c6eddfdb624b859 | I am | 2022-01-05 09:03:15 |
simplex: try garbage collection | 45148d2665eea195c05de5852b15485d83cb7223 | I am | 2022-01-05 06:10:46 |
testcases: add Gaussian Z_min testcase | 50bc3f27365e60db67f100c89ebc49b52e948645 | I am | 2022-01-04 13:55:59 |
whitebox: add Gaussian Z_min whitebox | e989c87895d681920056558a0b9473b93c3b299b | I am | 2022-01-04 13:54:37 |
schemes: přídat pár komentářů k schematům | e8f1665d43cfb70e89716f591852538df0e27d8c | I am | 2022-01-04 09:00:36 |
mplot.maxes: tri_nodes_plot is almost ready. Zbyvá to udělat hezky | 251a0f4b7909a5468453cfb518c2bbb4064cce51 | I am | 2022-01-04 06:42:36 |
mplot.maxes: add complete tri plots | 08c6e421188c4251cae1aa664a69bdc3a0afb314 | I am | 2022-01-04 05:45:21 |
mplot.mart: add tri_plot() function | aace2f9d02b7744651a089c164af9b7b5824729e | I am | 2022-01-04 05:44:14 |
simplex: fix use before initialization | ff8be3dcc679c4893948d7d1dc6c45402ccee81b | I am | 2022-01-04 05:43:17 |
mplot.maxes: prepare convex_hull_plot() function | 732f16a441c1a5f1160b45d91a050683ee70ff5d | I am | 2022-01-03 15:26:59 |
mplot.mart: comment out old convex plot function, prepare qhull_plot instead | 59de205056903adf87f84c5c1b022c3c83fa9c57 | I am | 2022-01-03 15:24:30 |
mplot.mgraph: prepare orth graph routines | 74e30ed99fcc6e68c6b3bf7e55bbd93fe8f26d13 | I am | 2022-01-02 11:18:11 |
convex_hull: complicate orth estimator | ba5f40eaf0f5f4012ef07f5684d58481cefbfe09 | I am | 2021-12-28 13:56:19 |
reader: explicitly use utf-8 encoding. (Nemělo by to nic pokazit.. Pitomé nastavení ve Windows) | 17bc8a9692695c22f78f8a39ed8aaddd4bfa4808 | I am | 2021-12-26 22:59:41 |
dicebox: walk throw candidates in reversed order | cadf89d0efc973d540b4ee6b337eb175ae962ee8 | I am | 2021-12-24 21:03:00 |
schemes: exclude walkington 5 and 7 (2D and 3D schemes) from offer in higher dimensions | 4d7b7e249c18c41f9220c778ada21116cca02aa0 | I am | 2021-12-23 23:52:07 |
simplex: implement fallback integration | 9a1048540d803a76cba8c92ca67efc16c932f1a9 | I am | 2021-12-23 22:36:38 |
schemes: oprava komentaře | bfa1fd1f1e1fe2e86838ee2f63f43fab50d0d115 | I am | 2021-12-22 13:40:45 |
schemes: send degree parameter as is to quadpy. | a1758193a21bf47031e376612418c26c1eb1d289 | I am | 2021-12-22 11:53:30 |
File | Lines added | Lines deleted |
---|---|---|
mplot/mgraph.py | 15 | 9 |
File mplot/mgraph.py changed (mode: 100644) (index cc0da22..7dfda89) | |||
... | ... | def tri_estimation_fill(ax, df): | |
25 | 25 | s = df['success'].to_numpy() | s = df['success'].to_numpy() |
26 | 26 | f = df['failure'].to_numpy() | f = df['failure'].to_numpy() |
27 | 27 | m = df['mix'].to_numpy() | m = df['mix'].to_numpy() |
28 | labels = ("failure domain estimation", "mixed simplices measure",\ | ||
29 | "out of sampling domain estimation", "success domain estimation") | ||
28 | labels = ("failure domain", "mixed domain",\ | ||
29 | "outside domain", "success domain") | ||
30 | 30 | return ax.stackplot(df.index, f, m, o, s, labels=labels, colors=colors) | return ax.stackplot(df.index, f, m, o, s, labels=labels, colors=colors) |
31 | 31 | ||
32 | 32 | ||
... | ... | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", plot_out | |
82 | 82 | # fill | # fill |
83 | 83 | tri_estimation_fill(ax, df) | tri_estimation_fill(ax, df) |
84 | 84 | ||
85 | if pf_exact is not None: | ||
86 | ax.axhline(pf_exact, c='b', label=pf_exact_method) | ||
85 | #č blbost, ale uspořadal jsem tu prvky tak, | ||
86 | #č aby se hezky kreslily v legendě | ||
87 | |||
88 | v = df['vertex_estimation'].to_numpy() | ||
89 | wv = df['weighted_vertex_estimation'].to_numpy() | ||
90 | ax.plot(df.index, wv, '-r', label="weighted $p_f$ estimation", zorder=100500) | ||
91 | ax.plot(df.index, v, '-m', label="simple $p_f$ estimation", zorder=1050) | ||
92 | |||
87 | 93 | ||
88 | 94 | #č teď čáry | #č teď čáry |
89 | 95 | if plot_outside: | if plot_outside: |
90 | 96 | o = df['outside'].to_numpy() | o = df['outside'].to_numpy() |
91 | ax.plot(df.index, o, '-', color="#AAAAAA", label="outside") | ||
97 | ax.plot(df.index, o, '-', color="#AAAAAA", \ | ||
98 | label="outside domain estimation", zorder=15) | ||
99 | |||
100 | if pf_exact is not None: | ||
101 | ax.axhline(pf_exact, c='b', label=pf_exact_method) | ||
92 | 102 | ||
93 | v = df['vertex_estimation'].to_numpy() | ||
94 | wv = df['weighted_vertex_estimation'].to_numpy() | ||
95 | ax.plot(df.index, v, '-m', label="simple $p_f$ estimation") | ||
96 | ax.plot(df.index, wv, '-r', label="weighted $p_f$ estimation") | ||
97 | 103 | ||
98 | 104 | ||
99 | 105 |