File convex_hull.py changed (mode: 100644) (index aee66a8..4b78c5d) |
3 |
3 |
|
|
4 |
4 |
import numpy as np |
import numpy as np |
5 |
5 |
import mpmath |
import mpmath |
6 |
|
from . import sball |
|
7 |
6 |
from scipy import stats |
from scipy import stats |
8 |
|
from scipy import spatial |
|
9 |
|
from .candybox import CandyBox |
|
10 |
|
from .IS_stat import PushAndPull # for Shell_IS |
|
|
7 |
|
from scipy import spatial # for QHull |
11 |
8 |
|
|
12 |
|
mpmath.mp.dps = 325 # to cover anything double-presigion float can handle |
|
|
9 |
|
mpmath.mp.dps = 325 # to cover anything that double-presigion float can handle |
13 |
10 |
|
|
14 |
11 |
#č jako sůl potřebujem statefull třidu, |
#č jako sůl potřebujem statefull třidu, |
15 |
12 |
#č která by schovávala vnitřní implementaciju, |
#č která by schovávala vnitřní implementaciju, |
|
... |
... |
class QHull: |
803 |
800 |
|
|
804 |
801 |
|
|
805 |
802 |
|
|
806 |
|
#č mým úkolem při návrhu této třidy je pořádně všecko zkomplikovat. |
|
807 |
|
#č Dostávám za to peníze. |
|
808 |
|
#č Takže. Udělám 3 druhů estimátorů |
|
809 |
|
# convex_hull_estimation -2: inside, -1: outside |
|
810 |
|
# shell_estimation -22: inner, -3: shell, -11: outer |
|
811 |
|
# ghull_estimation -22: inner, -21: shell inside, -12: shell outside, -11: outer |
|
812 |
|
|
|
813 |
|
try: # try to outthink f****** OS's memory management |
|
814 |
|
import os |
|
815 |
|
mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') |
|
816 |
|
except BaseException as e: |
|
817 |
|
mem_GB = 16 |
|
818 |
|
mem_bytes = mem_GB * 1024**3 # hello, Windows! |
|
819 |
|
print("convex_hull failed to get amount of RAM installed. %s GB is supposed."% mem_GB, repr(e)) |
|
820 |
|
print("BTW, you are using Windows, aren't you?") |
|
821 |
|
|
|
822 |
|
|
|
823 |
|
class Ghull: |
|
824 |
|
def __init__(self, hull, calculate_orth=True, calculate_2FORM=True, use_MC=False, non_Gaussian_reduction=0.9): |
|
825 |
|
self.hull = hull |
|
826 |
|
self.shell = sball.Shell(hull.sample.nvar) |
|
827 |
|
self.outside_dist = sball.Shell(hull.sample.nvar) |
|
828 |
|
self.sample = hull.sample |
|
829 |
|
|
|
830 |
|
#č vlastně nevím, ale nemusejí byť úplně zadarmo... |
|
831 |
|
self.calculate_orth = calculate_orth |
|
832 |
|
self.calculate_2FORM = calculate_2FORM |
|
833 |
|
|
|
834 |
|
self.use_MC = use_MC |
|
835 |
|
|
|
836 |
|
if use_MC: |
|
837 |
|
self.gint = Shell_MC(hull, self.shell, non_Gaussian_reduction) |
|
838 |
|
else: |
|
839 |
|
self.gint = Shell_IS(hull, self.shell, non_Gaussian_reduction) |
|
840 |
|
|
|
841 |
|
|
|
842 |
|
def fire(self, ns, use_MC=None): |
|
843 |
|
nodes = self.hull.fire(ns, use_MC=self.use_MC) |
|
844 |
|
if nodes is not None: |
|
845 |
|
return nodes |
|
846 |
|
else: |
|
847 |
|
return self.boom(ns) |
|
848 |
|
|
|
849 |
|
def boom(self, ns): |
|
850 |
|
if self.use_MC: |
|
851 |
|
self.outside_dist.set_bounds(self.get_R()) |
|
852 |
|
nodes_G = self.outside_dist.rvs(ns) |
|
853 |
|
else: |
|
854 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
855 |
|
rand_dir = sball.get_random_directions(ns, self.sample.nvar) #random directions |
|
856 |
|
|
|
857 |
|
# maximum radius, where norm.pdf() wasn't zero |
|
858 |
|
# -38.575500173381374935388521407730877399444580 |
|
859 |
|
# don't ask me what the magic python use to distinguish |
|
860 |
|
# digits after double precision |
|
861 |
|
max_R_ever = -38.5755 |
|
862 |
|
|
|
863 |
|
r = np.linspace(self.get_R(), max_R_ever, ns, endpoint=True) |
|
864 |
|
nodes_G = rand_dir*r[:,None] |
|
865 |
|
|
|
866 |
|
nodes = self.sample.f_model.new_sample(nodes_G, space='G') |
|
867 |
|
return nodes |
|
868 |
|
|
|
869 |
|
def get_orth_outside(self): |
|
870 |
|
if self.hull.space == 'G': |
|
871 |
|
return self.hull.get_orth_outside() |
|
872 |
|
else: |
|
873 |
|
#č bude to horší jak s-ball, ale budiž. |
|
874 |
|
x = np.full(self.sample.nvar, self.get_R()) |
|
875 |
|
return calculate_brick_complement_probability(-x, x) |
|
876 |
|
|
|
877 |
|
def get_2FORM_outside(self): |
|
878 |
|
if self.hull.space == 'G': |
|
879 |
|
return self.hull.get_2FORM_outside() |
|
880 |
|
else: |
|
881 |
|
#č nebudem do toho michat nic dalšího. |
|
882 |
|
#č Když 2FORM, tak 2FORM! |
|
883 |
|
return 2 * stats.norm.sf(self.get_R()) |
|
884 |
|
|
|
885 |
|
def get_FORM_outside(self): |
|
886 |
|
if self.hull.space == 'G': |
|
887 |
|
return stats.norm.sf(self.get_r()) |
|
888 |
|
else: |
|
889 |
|
return stats.norm.sf(self.get_R()) |
|
890 |
|
|
|
891 |
|
def get_R(self): |
|
892 |
|
sum_squared = np.sum(np.square(self.sample.G), axis=1) |
|
893 |
|
#index = np.argmax(sum_squared) |
|
894 |
|
return np.sqrt(np.nanmax(sum_squared)) |
|
895 |
|
|
|
896 |
|
def get_r(self): |
|
897 |
|
"calculates minimal signed distance to planes. Can therefore be negative" |
|
898 |
|
#return -np.nanmax(self.hull.b) |
|
899 |
|
if self.hull.space == 'G': |
|
900 |
|
return self.hull.get_r() |
|
901 |
|
else: |
|
902 |
|
#č get_design_points() nemusí být. |
|
903 |
|
#č QHull může nemít dostatek teček |
|
904 |
|
try: |
|
905 |
|
hull_points = self.hull.get_design_points() |
|
906 |
|
sum_squared = np.sum(np.square(hull_points.G), axis=1) |
|
907 |
|
hull_r = np.sqrt(np.nanmin(sum_squared)) |
|
908 |
|
except BaseException as e: |
|
909 |
|
msg = "cannot get hull points from the convex hull" |
|
910 |
|
print(self.__class__.__name__ +":", msg, repr(e)) |
|
911 |
|
hull_r = np.inf |
|
912 |
|
|
|
913 |
|
|
|
914 |
|
# ask our experimentation team |
|
915 |
|
gint_r = self.gint.get_r() |
|
916 |
|
|
|
917 |
|
#č podle mně, nemůže se stat, že by metoda vratila: |
|
918 |
|
#č 1. nenůlový poloměr a že by dokonce i centralní bod byl venku. |
|
919 |
|
#č 2. poloměr větší jak R |
|
920 |
|
#č Odpovědnost za to kladu na gint. |
|
921 |
|
return min(hull_r, gint_r) |
|
922 |
|
|
|
923 |
|
def get_shell_estimation(self): |
|
924 |
|
shell = self.shell |
|
925 |
|
r = self.get_r() |
|
926 |
|
R = self.get_R() |
|
927 |
|
|
|
928 |
|
if r<0: |
|
929 |
|
shell.set_bounds(0, R) |
|
930 |
|
else: |
|
931 |
|
shell.set_bounds(r, R) |
|
932 |
|
|
|
933 |
|
# shell_estimation -22: inner, -3: shell, -11: outer |
|
934 |
|
shell_estimation = {-22:shell.ps, -3: shell.p_shell, -11: shell.pf} |
|
935 |
|
global_stats = {"nsim":self.sample.nsim, "ndim":self.sample.nvar, \ |
|
936 |
|
"nfacets": self.hull.nsimplex, "r":r, "R":R, \ |
|
937 |
|
"inner":shell.ps, "shell":shell.p_shell, "outer":shell.pf} |
|
938 |
|
global_stats['FORM_outside'] = self.get_FORM_outside() |
|
939 |
|
if self.calculate_2FORM: |
|
940 |
|
global_stats['2FORM_outside'] = self.get_2FORM_outside() |
|
941 |
|
if self.calculate_orth: |
|
942 |
|
global_stats['orth_outside'] = self.get_orth_outside() |
|
943 |
|
return shell_estimation, global_stats |
|
944 |
|
|
|
945 |
|
#č nie |
|
946 |
|
##č pro mně je důležité, aby bylo možné rychle přepinat mezi metodama, |
|
947 |
|
##č aby bylo možné výsledky jednoduše porovnavat. |
|
948 |
|
##č Proto explicitně posílám priznak, jakou metodu použit. |
|
949 |
|
def integrate(self, nis, callback_all=None, callback_outside=None): |
|
950 |
|
#č no to teda disajn třidy je doopravdy hroznej |
|
951 |
|
# .get_shell_estimation() will calculate radiuses and will update shell |
|
952 |
|
shell_estimation, global_stats = self.get_shell_estimation() |
|
953 |
|
# shell_estimation -22: inner, -3: shell, -11: outer |
|
954 |
|
shell_estimation.pop(-3) |
|
955 |
|
# ghull_estimation -22: inner, -21: shell inside, -12: shell outside, -11: outer |
|
956 |
|
ghull_estimation = shell_estimation; del(shell_estimation) |
|
957 |
|
|
|
958 |
|
|
|
959 |
|
shell_ps, shell_pf, stats = self.gint.integrate(nis, callback_all, callback_outside) |
|
960 |
|
ghull_estimation[-21] = shell_ps |
|
961 |
|
ghull_estimation[-12] = shell_pf |
|
962 |
|
global_stats.update(stats) |
|
963 |
|
|
|
964 |
|
# convex_hull_estimation -2: inside, -1: outside |
|
965 |
|
inside = shell_ps + self.shell.ps |
|
966 |
|
outside = shell_pf + self.shell.pf |
|
967 |
|
convex_hull_estimation = {-2: inside, -1: outside} |
|
968 |
|
global_stats["inside"] = inside |
|
969 |
|
global_stats["outside"] = outside |
|
970 |
|
|
|
971 |
|
return ghull_estimation, convex_hull_estimation, global_stats |
|
972 |
|
|
|
973 |
|
|
|
974 |
|
|
|
975 |
|
|
|
976 |
|
#č pomocná třída pro integrování |
|
977 |
|
#č nejsem tedy jist, jestli je to nejlepší napad - |
|
978 |
|
#č dělit Ghull na podtřídy, delegovat funkcionalitu |
|
979 |
|
#č ale jinak Ghull se stavá hodně překomplikovaným. |
|
980 |
|
#č nic lepšího mně nenapadá, přemyšlel jsem dlouho. |
|
981 |
|
class Shell_MC: |
|
982 |
|
def __init__(self, hull, shell, non_Gaussian_reduction=0.98): |
|
983 |
|
self.shell = shell |
|
984 |
|
self.hull = hull |
|
985 |
|
self.nvar = hull.sample.nvar |
|
986 |
|
|
|
987 |
|
self.integration_cutoff = np.inf |
|
988 |
|
self.non_Gaussian_reduction = non_Gaussian_reduction |
|
989 |
|
|
|
990 |
|
# test if r>0 |
|
991 |
|
self.r = 0 |
|
992 |
|
central_G = np.full(hull.sample.nvar, 0, dtype=np.int8) |
|
993 |
|
self.DP = self.hull.sample.f_model.new_sample(central_G, space='G') |
|
994 |
|
|
|
995 |
|
def reset(self): # clear |
|
996 |
|
self.r_needed = (self.hull.space!='G') |
|
997 |
|
|
|
998 |
|
self.nsampled = 0 |
|
999 |
|
self.nfailed = 0 |
|
1000 |
|
|
|
1001 |
|
@property |
|
1002 |
|
def DP_is_valid(self): |
|
1003 |
|
#č dalo by se kontrolovat změny obálky |
|
1004 |
|
#č a provadět kontrolu DP pouze po změně obálky. |
|
1005 |
|
#č Nejsem liný, jeden bodík prostě za to doopravdy nestoji. |
|
1006 |
|
mask = self.hull.is_outside(self.DP) |
|
1007 |
|
return np.any(mask) |
|
1008 |
|
|
|
1009 |
|
#č na rozdil od rodičovské třídy |
|
1010 |
|
#č vrací odhad r na základě předchozích integrací |
|
1011 |
|
#č metoda je navržena tak, aby Shell_IS jú mohl zdědit. |
|
1012 |
|
def get_r(self): |
|
1013 |
|
#č bojim sa, rerukce bude aplikována dycky |
|
1014 |
|
#č Bacha, metoda bude vracet nuly pro obálky v Gaussovskem prostoru! |
|
1015 |
|
return self.r * self.non_Gaussian_reduction |
|
1016 |
|
|
|
1017 |
|
# stateless |
|
1018 |
|
def rvs(self, nsampled, seats, ns): |
|
1019 |
|
"Generování vzorků (kandidátů a integračních bodů)" |
|
1020 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
1021 |
|
rand_dir = sball.get_random_directions(seats, self.nvar) #random directions |
|
1022 |
|
|
|
1023 |
|
# generate sampling probabilites |
|
1024 |
|
left = (ns-nsampled) / ns |
|
1025 |
|
right = (ns-nsampled-seats) / ns |
|
1026 |
|
#č přidáme trochu zmatku. |
|
1027 |
|
#č globálně jdeme r->R, localně ale R_i+ -> R_i- |
|
1028 |
|
#č menší poloměry musejí jít dřív - na to zavazano nonGaussian _r |
|
1029 |
|
#č převracení lokalně umožní vždycky mít alespoň jeden bodík outside, |
|
1030 |
|
#č což je taky velmi vhodné vzhledem k tomu, že se _r bere z outside bodíků |
|
1031 |
|
p = np.linspace(right, left, seats, endpoint=False) # probabilities for the radius |
|
1032 |
|
|
|
1033 |
|
# convert probabilitites into random radii |
|
1034 |
|
# (distances from origin that are greater than r and less than R) |
|
1035 |
|
r = self.shell.isf(p) # actually, it is the same as CDF inverse |
|
1036 |
|
|
|
1037 |
|
#finally a random sample from the optimal IS density: |
|
1038 |
|
sample_G = rand_dir*r[:,None] |
|
1039 |
|
|
|
1040 |
|
return sample_G |
|
1041 |
|
|
|
1042 |
|
# bus analogy |
|
1043 |
|
def _process_part(self, seats, nis, callback_all=None, callback_outside=None): |
|
1044 |
|
# boarding |
|
1045 |
|
nodes_G = self.rvs(self.nsampled, seats, nis) |
|
1046 |
|
nodes = self.hull.sample.f_model.new_sample(nodes_G, space='G') |
|
1047 |
|
# who is back? |
|
1048 |
|
mask = self.hull.is_outside(nodes) |
|
1049 |
|
if self.r_needed and np.any(mask): |
|
1050 |
|
#č rvs má vzorkovat od měnšího poloměru k většímu. |
|
1051 |
|
#č to znamená, že první outside bude mít nejměnší r vůbec |
|
1052 |
|
self._r_check_out(nodes[mask]) |
|
1053 |
|
self.r_needed = False |
|
1054 |
|
|
|
1055 |
|
if callback_all is not None: |
|
1056 |
|
# -2 = 'inside' -1 = 'outside' |
|
1057 |
|
candy_nodes = CandyBox(nodes, event_id=mask-2, is_outside=mask) |
|
1058 |
|
callback_all(candy_nodes) |
|
1059 |
|
|
|
1060 |
|
if (callback_outside is not None) and np.any(mask): |
|
1061 |
|
callback_outside(nodes[mask]) |
|
1062 |
|
|
|
1063 |
|
assert len(mask) == seats |
|
1064 |
|
#č nevím proč, ale kdysi mě to vyšlo rychlejc jak obyčejný součet |
|
1065 |
|
self.nfailed += len(mask[mask]) |
|
1066 |
|
self.nsampled += len(mask) |
|
1067 |
|
|
|
1068 |
|
#č metoda je navržena tak, aby Shell_IS jú mohl zdědit. |
|
1069 |
|
def _r_check_out(self, outside_nodes): |
|
1070 |
|
sum_squares = np.sum(np.square(outside_nodes.G), axis=1) |
|
1071 |
|
arg = np.nanargmin(sum_squares) |
|
1072 |
|
new_r = np.sqrt(sum_squares[arg]) |
|
1073 |
|
if (not self.DP_is_valid) or (new_r < self.r): |
|
1074 |
|
self.DP = outside_nodes[arg] |
|
1075 |
|
self.r = new_r |
|
1076 |
|
|
|
1077 |
|
|
|
1078 |
|
#č metoda je navržena tak, aby Shell_IS jú mohl zdědit. |
|
1079 |
|
def integrate(self, nis, callback_all=None, callback_outside=None): |
|
1080 |
|
self.reset() |
|
1081 |
|
|
|
1082 |
|
if self.hull.nsimplex == 0: |
|
1083 |
|
bus = self.integration_cutoff |
|
1084 |
|
else: |
|
1085 |
|
bus = int(mem_bytes / self.hull.nsimplex / 8 / 3) + 1 |
|
1086 |
|
while self.nsampled < nis: |
|
1087 |
|
|
|
1088 |
|
seats = min(nis - self.nsampled, self.integration_cutoff, bus) |
|
1089 |
|
try: |
|
1090 |
|
self._process_part(seats, nis, callback_all, callback_outside) |
|
1091 |
|
except MemoryError as m: |
|
1092 |
|
print(self.__class__.__name__ +":", "memory error, %s sedaček" % seats, repr(m)) |
|
1093 |
|
self.integration_cutoff = int(np.ceil(seats/2)) |
|
1094 |
|
|
|
1095 |
|
assert nis == self.nsampled |
|
1096 |
|
|
|
1097 |
|
return self._get_result() |
|
1098 |
|
|
|
1099 |
|
|
|
1100 |
|
def _get_result(self): |
|
1101 |
|
|
|
1102 |
|
nis = self.nsampled |
|
1103 |
|
nf = self.nfailed |
|
1104 |
|
ns = nis - nf |
|
1105 |
|
p_shell = self.shell.p_shell |
|
1106 |
|
shell_pf = nf/nis * p_shell |
|
1107 |
|
shell_ps = ns/nis * p_shell |
|
1108 |
|
|
|
1109 |
|
stats = dict() |
|
1110 |
|
stats["shell_budget"] = nis |
|
1111 |
|
stats["shell_inside"] = shell_ps |
|
1112 |
|
stats["shell_outside"] = shell_pf |
|
1113 |
|
|
|
1114 |
|
return shell_ps, shell_pf, stats |
|
1115 |
|
|
|
1116 |
|
|
|
1117 |
|
|
|
1118 |
|
class Shell_IS(Shell_MC): |
|
1119 |
|
def reset(self): # clear |
|
1120 |
|
self.r_needed = (self.hull.space!='G') |
|
1121 |
|
|
|
1122 |
|
self.nsampled = 0 |
|
1123 |
|
self.pp = PushAndPull() |
|
1124 |
|
|
|
1125 |
|
|
|
1126 |
|
# stateless |
|
1127 |
|
def rvs(self, nsampled, seats, ns): |
|
1128 |
|
"Generování vzorků (kandidátů a integračních bodů)" |
|
1129 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
1130 |
|
rand_dir = sball.get_random_directions(seats, self.nvar) #random directions |
|
1131 |
|
|
|
1132 |
|
#č poloměry bereme ze skořapky |
|
1133 |
|
#č za správné nastavení (stejně jako u MC) |
|
1134 |
|
#č zodpovidá uživatel třídy |
|
1135 |
|
#č třída vlastní odhad r nijak nevyuživá! |
|
1136 |
|
r = self.shell.r |
|
1137 |
|
R = self.shell.R |
|
1138 |
|
delta_r = R - r |
|
1139 |
|
left = nsampled / ns * delta_r + r |
|
1140 |
|
right = (nsampled + seats) / ns * delta_r + r |
|
1141 |
|
#č přidáme trochu zmatku. |
|
1142 |
|
#č globálně jdeme r->R, localně ale R_i+ -> R_i- |
|
1143 |
|
#č menší poloměry musejí jít dřív - na to zavazano nonGaussian _r |
|
1144 |
|
#č převracení lokalně umožní vždycky mít alespoň jeden bodík outside, |
|
1145 |
|
#č což je taky velmi vhodné vzhledem k tomu, že se _r bere z outside bodíků |
|
1146 |
|
rs = np.linspace(right, left, seats, endpoint=False) |
|
1147 |
|
|
|
1148 |
|
#finally a random sample from the optimal IS density: |
|
1149 |
|
sample_G = rand_dir*rs[:,None] |
|
1150 |
|
|
|
1151 |
|
#č a jsme doma. Platba za špatný design. |
|
1152 |
|
#č Potřebujeme hustotu 1D rozdělení, implementovanou v Radial |
|
1153 |
|
#č Shell se síce dědí od Radial, ale implementuje .pdf() jako sdruženou |
|
1154 |
|
#č hustotu v nD Gaussovskem prostoru |
|
1155 |
|
# |
|
1156 |
|
#č vahy jsou definovány jako podil původního rozdělení k vzorkovácímu |
|
1157 |
|
#č původní - Chi rozdělení. nemá zde být žádný p_shell |
|
1158 |
|
f_pdf = stats.chi.pdf(rs, self.nvar) |
|
1159 |
|
#č vzorkovácí. |
|
1160 |
|
#h_pdf = 1/delta_r |
|
1161 |
|
weights = f_pdf * delta_r |
|
1162 |
|
|
|
1163 |
|
return sample_G, weights |
|
1164 |
|
|
|
1165 |
|
# bus analogy |
|
1166 |
|
def _process_part(self, seats, nis, callback_all=None, callback_outside=None): |
|
1167 |
|
# boarding |
|
1168 |
|
nodes_G, weights = self.rvs(self.nsampled, seats, nis) |
|
1169 |
|
nodes = self.hull.sample.f_model.new_sample(nodes_G, space='G') |
|
1170 |
|
# who is back? |
|
1171 |
|
mask = self.hull.is_outside(nodes) |
|
1172 |
|
if self.r_needed and np.any(mask): |
|
1173 |
|
#č rvs má vzorkovat od měnšího poloměru k většímu. |
|
1174 |
|
#č to znamená, že první outside bude mít nejměnší r vůbec |
|
1175 |
|
self._r_check_out(nodes[mask]) |
|
1176 |
|
self.r_needed = False |
|
1177 |
|
|
|
1178 |
|
assert len(mask) == seats |
|
1179 |
|
self.pp.add(weights, mask) |
|
1180 |
|
self.nsampled += len(mask) |
|
1181 |
|
|
|
1182 |
|
if callback_all is not None: |
|
1183 |
|
# -2 = 'inside' -1 = 'outside' |
|
1184 |
|
candy_nodes = CandyBox(nodes, event_id=mask-2, is_outside=mask, weights=weights) |
|
1185 |
|
callback_all(candy_nodes) |
|
1186 |
|
|
|
1187 |
|
if (callback_outside is not None) and np.any(mask): |
|
1188 |
|
callback_outside(nodes[mask]) |
|
1189 |
|
|
|
1190 |
|
|
|
1191 |
|
def _get_result(self): |
|
1192 |
|
|
|
1193 |
|
nis = self.nsampled |
|
1194 |
|
#č nejdřív true, pak false. Posilali jsme is_outside |
|
1195 |
|
mean_pf, mean_ps = self.pp.mean |
|
1196 |
|
var_pf, var_ps = self.pp.var |
|
1197 |
|
shell_pf, shell_ps = self.pp.correct_means(p_overall=self.shell.p_shell) |
|
1198 |
|
|
|
1199 |
|
stats = dict() |
|
1200 |
|
stats["shell_budget"] = nis |
|
1201 |
|
stats["shell_inside_measured"] = mean_ps |
|
1202 |
|
stats["shell_outside_measured"] = mean_pf |
|
1203 |
|
stats["shell_inside_var"] = var_ps |
|
1204 |
|
stats["shell_outside_var"] = var_pf |
|
1205 |
|
stats["shell_inside"] = shell_ps |
|
1206 |
|
stats["shell_outside"] = shell_pf |
|
1207 |
|
|
|
1208 |
|
return shell_ps, shell_pf, stats |
|
File ghull.py added (mode: 100644) (index 0000000..c820fcd) |
|
1 |
|
#!/usr/bin/env python |
|
2 |
|
# coding: utf-8 |
|
3 |
|
|
|
4 |
|
import numpy as np |
|
5 |
|
from . import sball |
|
6 |
|
from scipy import stats |
|
7 |
|
from .candybox import CandyBox |
|
8 |
|
from .IS_stat import PushAndPull # for Shell_IS |
|
9 |
|
from .IS_stat import get_1DS_sample # for Shell_1DS |
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
try: # try to outthink f****** OS's memory management |
|
14 |
|
import os |
|
15 |
|
mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') |
|
16 |
|
except BaseException as e: |
|
17 |
|
mem_GB = 16 |
|
18 |
|
mem_bytes = mem_GB * 1024**3 # hello, Windows! |
|
19 |
|
print("ghull failed to get amount of RAM installed. %s GB is supposed."% mem_GB, repr(e)) |
|
20 |
|
print("BTW, you are using Windows, aren't you?") |
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
|
26 |
|
#č pomocná třída pro integrování |
|
27 |
|
#č nejsem tedy jist, jestli je to nejlepší napad - |
|
28 |
|
#č dělit Ghull na podtřídy, delegovat funkcionalitu |
|
29 |
|
#č ale jinak Ghull se stavá hodně překomplikovaným. |
|
30 |
|
#č nic lepšího mně nenapadá, přemyšlel jsem dlouho. |
|
31 |
|
class _ShellBaseIntegration: |
|
32 |
|
def __init__(self, hull, shell, non_Gaussian_reduction=0.98): |
|
33 |
|
self.shell = shell |
|
34 |
|
self.hull = hull |
|
35 |
|
self.nvar = hull.sample.nvar |
|
36 |
|
|
|
37 |
|
self.integration_cutoff = np.inf |
|
38 |
|
self.non_Gaussian_reduction = non_Gaussian_reduction |
|
39 |
|
|
|
40 |
|
# test if r>0 |
|
41 |
|
self.r = 0 |
|
42 |
|
central_G = np.full(hull.sample.nvar, 0, dtype=np.int8) |
|
43 |
|
self.DP = self.hull.sample.f_model.new_sample(central_G, space='G') |
|
44 |
|
|
|
45 |
|
|
|
46 |
|
@property |
|
47 |
|
def DP_is_valid(self): |
|
48 |
|
#č dalo by se kontrolovat změny obálky |
|
49 |
|
#č a provadět kontrolu DP pouze po změně obálky. |
|
50 |
|
#č Nejsem liný, jeden bodík prostě za to doopravdy nestoji. |
|
51 |
|
mask = self.hull.is_outside(self.DP) |
|
52 |
|
return np.any(mask) |
|
53 |
|
|
|
54 |
|
#č na rozdil od rodičovské třídy |
|
55 |
|
#č vrací odhad r na základě předchozích integrací |
|
56 |
|
#č metoda je navržena tak, aby Shell_IS jú mohl zdědit. |
|
57 |
|
def get_r(self): |
|
58 |
|
#č bojim sa, rerukce bude aplikována vždycky |
|
59 |
|
#č Bacha, metoda bude vracet nuly pro obálky v Gaussovskem prostoru! |
|
60 |
|
return self.r * self.non_Gaussian_reduction |
|
61 |
|
|
|
62 |
|
|
|
63 |
|
#č metoda je navržena tak, aby Shell_IS jú mohl zdědit. |
|
64 |
|
def _r_check_out(self, outside_nodes): |
|
65 |
|
sum_squares = np.sum(np.square(outside_nodes.G), axis=1) |
|
66 |
|
arg = np.nanargmin(sum_squares) |
|
67 |
|
new_r = np.sqrt(sum_squares[arg]) |
|
68 |
|
if (not self.DP_is_valid) or (new_r < self.r): |
|
69 |
|
self.DP = outside_nodes[arg] |
|
70 |
|
self.r = new_r |
|
71 |
|
|
|
72 |
|
|
|
73 |
|
#č metoda je navržena tak, aby Shell_IS jú mohl zdědit. |
|
74 |
|
def integrate(self, nis, callback_all=None, callback_outside=None): |
|
75 |
|
self.reset(nis) |
|
76 |
|
|
|
77 |
|
if self.hull.nsimplex == 0: |
|
78 |
|
bus = self.integration_cutoff |
|
79 |
|
else: |
|
80 |
|
bus = int(mem_bytes / self.hull.nsimplex / 8 / 3) + 1 |
|
81 |
|
while self.nsampled < nis: |
|
82 |
|
|
|
83 |
|
seats = min(nis - self.nsampled, self.integration_cutoff, bus) |
|
84 |
|
try: |
|
85 |
|
self._process_part(seats, nis, callback_all, callback_outside) |
|
86 |
|
except MemoryError as m: |
|
87 |
|
print(self.__class__.__name__ +":", "memory error, %s sedaček" % seats, repr(m)) |
|
88 |
|
self.integration_cutoff = int(np.ceil(seats/2)) |
|
89 |
|
|
|
90 |
|
assert nis == self.nsampled |
|
91 |
|
|
|
92 |
|
#č finalizovat by mohl i self._get_result(), |
|
93 |
|
#č ale nebudeme michat vodku s pivem! |
|
94 |
|
self._finalize() |
|
95 |
|
|
|
96 |
|
return self._get_result() |
|
97 |
|
|
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
class Shell_MC(_ShellBaseIntegration): |
|
103 |
|
|
|
104 |
|
def reset(self, nis): # clear |
|
105 |
|
self.r_needed = (self.hull.space!='G') |
|
106 |
|
|
|
107 |
|
self.nsampled = 0 |
|
108 |
|
self.nfailed = 0 |
|
109 |
|
|
|
110 |
|
|
|
111 |
|
# stateless |
|
112 |
|
def rvs(self, nsampled, seats, ns): |
|
113 |
|
"Generování vzorků (kandidátů a integračních bodů)" |
|
114 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
115 |
|
rand_dir = sball.get_random_directions(seats, self.nvar) #random directions |
|
116 |
|
|
|
117 |
|
# generate sampling probabilites |
|
118 |
|
left = (ns-nsampled) / ns |
|
119 |
|
right = (ns-nsampled-seats) / ns |
|
120 |
|
#č přidáme trochu zmatku. |
|
121 |
|
#č globálně jdeme r->R, localně ale R_i+ -> R_i- |
|
122 |
|
#č menší poloměry musejí jít dřív - na to zavazano nonGaussian _r |
|
123 |
|
#č převracení lokalně umožní vždycky mít alespoň jeden bodík outside, |
|
124 |
|
#č což je taky velmi vhodné vzhledem k tomu, že se _r bere z outside bodíků |
|
125 |
|
p = np.linspace(right, left, seats, endpoint=False) # probabilities for the radius |
|
126 |
|
|
|
127 |
|
# convert probabilitites into random radii |
|
128 |
|
# (distances from origin that are greater than r and less than R) |
|
129 |
|
r = self.shell.isf(p) # actually, it is the same as CDF inverse |
|
130 |
|
|
|
131 |
|
#finally a random sample from the optimal IS density: |
|
132 |
|
sample_G = rand_dir*r[:,None] |
|
133 |
|
|
|
134 |
|
return sample_G |
|
135 |
|
|
|
136 |
|
# bus analogy |
|
137 |
|
def _process_part(self, seats, nis, callback_all=None, callback_outside=None): |
|
138 |
|
# boarding |
|
139 |
|
nodes_G = self.rvs(self.nsampled, seats, nis) |
|
140 |
|
nodes = self.hull.sample.f_model.new_sample(nodes_G, space='G') |
|
141 |
|
# who is back? |
|
142 |
|
mask = self.hull.is_outside(nodes) |
|
143 |
|
if self.r_needed and np.any(mask): |
|
144 |
|
#č rvs má vzorkovat od měnšího poloměru k většímu. |
|
145 |
|
#č to znamená, že první outside bude mít nejměnší r vůbec |
|
146 |
|
self._r_check_out(nodes[mask]) |
|
147 |
|
self.r_needed = False |
|
148 |
|
|
|
149 |
|
if callback_all is not None: |
|
150 |
|
# -2 = 'inside' -1 = 'outside' |
|
151 |
|
candy_nodes = CandyBox(nodes, event_id=mask-2, is_outside=mask) |
|
152 |
|
callback_all(candy_nodes) |
|
153 |
|
|
|
154 |
|
if (callback_outside is not None) and np.any(mask): |
|
155 |
|
callback_outside(nodes[mask]) |
|
156 |
|
|
|
157 |
|
assert len(mask) == seats |
|
158 |
|
#č nevím proč, ale kdysi mě to vyšlo rychlejc jak obyčejný součet |
|
159 |
|
self.nfailed += len(mask[mask]) |
|
160 |
|
self.nsampled += len(mask) |
|
161 |
|
|
|
162 |
|
|
|
163 |
|
#č finalizovat by mohl i self._get_result(), |
|
164 |
|
#č ale nebudeme michat vodku s pivem! |
|
165 |
|
def _finalize(self): |
|
166 |
|
#č nebyl žádný outside? |
|
167 |
|
#č to přece není v pořádku! |
|
168 |
|
#č (jen to nikomu neříkejte, |
|
169 |
|
#č ale v současné implementaci třídy |
|
170 |
|
#č podmínka dole by neměla nikdy nastat) |
|
171 |
|
if self.r_needed: |
|
172 |
|
self.r = self.shell.R * self.non_Gaussian_reduction |
|
173 |
|
|
|
174 |
|
def _get_result(self): |
|
175 |
|
|
|
176 |
|
nis = self.nsampled |
|
177 |
|
nf = self.nfailed |
|
178 |
|
ns = nis - nf |
|
179 |
|
p_shell = self.shell.p_shell |
|
180 |
|
shell_pf = nf/nis * p_shell |
|
181 |
|
shell_ps = ns/nis * p_shell |
|
182 |
|
|
|
183 |
|
stats = dict() |
|
184 |
|
stats["shell_budget"] = nis |
|
185 |
|
stats["shell_inside"] = shell_ps |
|
186 |
|
stats["shell_outside"] = shell_pf |
|
187 |
|
|
|
188 |
|
return shell_ps, shell_pf, stats |
|
189 |
|
|
|
190 |
|
|
|
191 |
|
|
|
192 |
|
|
|
193 |
|
class Shell_IS(Shell_MC): |
|
194 |
|
def reset(self, nis): # clear |
|
195 |
|
self.r_needed = (self.hull.space!='G') |
|
196 |
|
|
|
197 |
|
self.nsampled = 0 |
|
198 |
|
self.pp = PushAndPull() |
|
199 |
|
|
|
200 |
|
|
|
201 |
|
# stateless |
|
202 |
|
def rvs(self, nsampled, seats, ns): |
|
203 |
|
"Generování vzorků (kandidátů a integračních bodů)" |
|
204 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
205 |
|
rand_dir = sball.get_random_directions(seats, self.nvar) #random directions |
|
206 |
|
|
|
207 |
|
#č poloměry bereme ze skořapky |
|
208 |
|
#č za správné nastavení (stejně jako u MC) |
|
209 |
|
#č zodpovidá uživatel třídy |
|
210 |
|
#č třída vlastní odhad r nijak nevyuživá! |
|
211 |
|
r = self.shell.r |
|
212 |
|
R = self.shell.R |
|
213 |
|
delta_r = R - r |
|
214 |
|
left = nsampled / ns * delta_r + r |
|
215 |
|
right = (nsampled + seats) / ns * delta_r + r |
|
216 |
|
#č přidáme trochu zmatku. |
|
217 |
|
#č globálně jdeme r->R, localně ale R_i+ -> R_i- |
|
218 |
|
#č menší poloměry musejí jít dřív - na to zavazano nonGaussian _r |
|
219 |
|
#č převracení lokalně umožní vždycky mít alespoň jeden bodík outside, |
|
220 |
|
#č což je taky velmi vhodné vzhledem k tomu, že se _r bere z outside bodíků |
|
221 |
|
rs = np.linspace(right, left, seats, endpoint=False) |
|
222 |
|
|
|
223 |
|
#finally a random sample from the optimal IS density: |
|
224 |
|
sample_G = rand_dir*rs[:,None] |
|
225 |
|
|
|
226 |
|
#č a jsme doma. Platba za špatný design. |
|
227 |
|
#č Potřebujeme hustotu 1D rozdělení, implementovanou v Radial |
|
228 |
|
#č Shell se síce dědí od Radial, ale implementuje .pdf() jako sdruženou |
|
229 |
|
#č hustotu v nD Gaussovskem prostoru |
|
230 |
|
# |
|
231 |
|
#č vahy jsou definovány jako podil původního rozdělení k vzorkovácímu |
|
232 |
|
#č původní - Chi rozdělení. nemá zde být žádný p_shell |
|
233 |
|
f_pdf = stats.chi.pdf(rs, self.nvar) |
|
234 |
|
#č vzorkovácí. |
|
235 |
|
#h_pdf = 1/delta_r |
|
236 |
|
weights = f_pdf * delta_r |
|
237 |
|
|
|
238 |
|
return sample_G, weights |
|
239 |
|
|
|
240 |
|
# bus analogy |
|
241 |
|
def _process_part(self, seats, nis, callback_all=None, callback_outside=None): |
|
242 |
|
# boarding |
|
243 |
|
nodes_G, weights = self.rvs(self.nsampled, seats, nis) |
|
244 |
|
nodes = self.hull.sample.f_model.new_sample(nodes_G, space='G') |
|
245 |
|
# who is back? |
|
246 |
|
mask = self.hull.is_outside(nodes) |
|
247 |
|
if self.r_needed and np.any(mask): |
|
248 |
|
#č rvs má vzorkovat od měnšího poloměru k většímu. |
|
249 |
|
#č to znamená, že první outside bude mít nejměnší r vůbec |
|
250 |
|
self._r_check_out(nodes[mask]) |
|
251 |
|
self.r_needed = False |
|
252 |
|
|
|
253 |
|
assert len(mask) == seats |
|
254 |
|
self.pp.add(weights, mask) |
|
255 |
|
self.nsampled += len(mask) |
|
256 |
|
|
|
257 |
|
if callback_all is not None: |
|
258 |
|
# -2 = 'inside' -1 = 'outside' |
|
259 |
|
candy_nodes = CandyBox(nodes, event_id=mask-2, is_outside=mask, weights=weights) |
|
260 |
|
callback_all(candy_nodes) |
|
261 |
|
|
|
262 |
|
if (callback_outside is not None) and np.any(mask): |
|
263 |
|
callback_outside(nodes[mask]) |
|
264 |
|
|
|
265 |
|
|
|
266 |
|
def _get_result(self): |
|
267 |
|
|
|
268 |
|
nis = self.nsampled |
|
269 |
|
#č nejdřív true, pak false. Posilali jsme is_outside |
|
270 |
|
mean_pf, mean_ps = self.pp.mean |
|
271 |
|
var_pf, var_ps = self.pp.var |
|
272 |
|
shell_pf, shell_ps = self.pp.correct_means(p_overall=self.shell.p_shell) |
|
273 |
|
|
|
274 |
|
stats = dict() |
|
275 |
|
stats["shell_budget"] = nis |
|
276 |
|
stats["shell_inside_measured"] = mean_ps |
|
277 |
|
stats["shell_outside_measured"] = mean_pf |
|
278 |
|
stats["shell_inside_var"] = var_ps |
|
279 |
|
stats["shell_outside_var"] = var_pf |
|
280 |
|
stats["shell_inside"] = shell_ps |
|
281 |
|
stats["shell_outside"] = shell_pf |
|
282 |
|
|
|
283 |
|
return shell_ps, shell_pf, stats |
|
284 |
|
|
|
285 |
|
|
|
286 |
|
|
|
287 |
|
#č slovní zásoba došla mně už před pár rokama |
|
288 |
|
class Shell_1DS(_ShellBaseIntegration): |
|
289 |
|
"""1DS stands for 1D sampling. |
|
290 |
|
1DS is, actually, an importance sampling method |
|
291 |
|
that, actually, does not calculate IS weights |
|
292 |
|
as f_density / h_density, but |
|
293 |
|
(arbitrary, nonuniformly) divides interval to subintervals. |
|
294 |
|
By using CDF transformes subintervals to 0-1 measure line. |
|
295 |
|
Then gets one node as middle point of every subinterval, |
|
296 |
|
weights therefore are just interval widths itself. |
|
297 |
|
No sampling imprecisions are introduced, |
|
298 |
|
therefore no spring, no correction are needed. |
|
299 |
|
""" |
|
300 |
|
def reset(self, nis): # clear |
|
301 |
|
self.r_needed = (self.hull.space!='G') |
|
302 |
|
|
|
303 |
|
self.nsampled = 0 |
|
304 |
|
|
|
305 |
|
#č poloměry bereme ze skořapky |
|
306 |
|
#č za správné nastavení (stejně jako u MC) |
|
307 |
|
#č zodpovidá uživatel třídy |
|
308 |
|
#č třída vlastní odhad r nijak nevyuživá! |
|
309 |
|
r = self.shell.r |
|
310 |
|
R = self.shell.R |
|
311 |
|
# let's predefine 1D sequence at very beginning |
|
312 |
|
x_sub = np.linspace(r, R, nis+1, endpoint=True) |
|
313 |
|
x, weights = get_1DS_sample(stats.chi(self.nvar), x_sub) |
|
314 |
|
self.x = x |
|
315 |
|
self.weights = weights |
|
316 |
|
self.mask = np.empty(nis, dtype=np.bool) |
|
317 |
|
|
|
318 |
|
|
|
319 |
|
|
|
320 |
|
# bus analogy |
|
321 |
|
def _process_part(self, seats, nis, callback_all=None, callback_outside=None): |
|
322 |
|
# boarding |
|
323 |
|
left = self.nsampled |
|
324 |
|
right = self.nsampled + seats |
|
325 |
|
rs = self.x[left:right] |
|
326 |
|
|
|
327 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
328 |
|
rand_dir = sball.get_random_directions(seats, self.nvar) #random directions |
|
329 |
|
nodes_G = rand_dir*rs[:,None] |
|
330 |
|
nodes = self.hull.sample.f_model.new_sample(nodes_G, space='G') |
|
331 |
|
|
|
332 |
|
# who is back? |
|
333 |
|
mask = self.hull.is_outside(nodes) |
|
334 |
|
assert len(mask) == seats |
|
335 |
|
|
|
336 |
|
if self.r_needed and np.any(mask): |
|
337 |
|
#č má se vzorkovat od měnšího poloměru k většímu. |
|
338 |
|
#č to znamená, že první outside bude mít nejměnší r vůbec |
|
339 |
|
self._r_check_out(nodes[mask]) |
|
340 |
|
self.r_needed = False |
|
341 |
|
|
|
342 |
|
# the most important part |
|
343 |
|
self.nsampled += len(mask) |
|
344 |
|
self.mask[left:right] = mask |
|
345 |
|
|
|
346 |
|
if callback_all is not None: |
|
347 |
|
# -2 = 'inside' -1 = 'outside' |
|
348 |
|
candy_nodes = CandyBox(nodes, event_id=mask-2, is_outside=mask) |
|
349 |
|
callback_all(candy_nodes) |
|
350 |
|
|
|
351 |
|
if (callback_outside is not None) and np.any(mask): |
|
352 |
|
callback_outside(nodes[mask]) |
|
353 |
|
|
|
354 |
|
|
|
355 |
|
def _finalize(self): |
|
356 |
|
#č nebyl žádný outside? |
|
357 |
|
#č to přece není v pořádku! |
|
358 |
|
if self.r_needed: |
|
359 |
|
self.r = self.shell.R * self.non_Gaussian_reduction |
|
360 |
|
|
|
361 |
|
|
|
362 |
|
def _get_result(self): |
|
363 |
|
#č mask related to hull.is_outside() |
|
364 |
|
shell_pf = np.sum(self.weights[self.mask]) |
|
365 |
|
shell_ps = np.sum(self.weights[~self.mask]) |
|
366 |
|
|
|
367 |
|
stats = dict() |
|
368 |
|
stats["shell_budget"] = self.nsampled |
|
369 |
|
stats["shell_inside"] = shell_ps |
|
370 |
|
stats["shell_outside"] = shell_pf |
|
371 |
|
|
|
372 |
|
return shell_ps, shell_pf, stats |
|
373 |
|
|
|
374 |
|
|
|
375 |
|
|
|
376 |
|
|
|
377 |
|
#č mým úkolem při návrhu této třidy je pořádně všecko zkomplikovat. |
|
378 |
|
#č Dostávám za to peníze. |
|
379 |
|
#č Takže. Udělám 3 druhů estimátorů |
|
380 |
|
# convex_hull_estimation -2: inside, -1: outside |
|
381 |
|
# shell_estimation -22: inner, -3: shell, -11: outer |
|
382 |
|
# ghull_estimation -22: inner, -21: shell inside, -12: shell outside, -11: outer |
|
383 |
|
class Ghull: |
|
384 |
|
def __init__(self, hull, calculate_orth=True, calculate_2FORM=True, \ |
|
385 |
|
Integrator=Shell_1DS, non_Gaussian_reduction=0.9): |
|
386 |
|
self.hull = hull |
|
387 |
|
self.shell = sball.Shell(hull.sample.nvar) |
|
388 |
|
self.outside_dist = sball.Shell(hull.sample.nvar) |
|
389 |
|
self.sample = hull.sample |
|
390 |
|
|
|
391 |
|
#č vlastně nevím, ale nemusejí byť úplně zadarmo... |
|
392 |
|
self.calculate_orth = calculate_orth |
|
393 |
|
self.calculate_2FORM = calculate_2FORM |
|
394 |
|
|
|
395 |
|
self.set_integrator(Integrator, non_Gaussian_reduction) |
|
396 |
|
|
|
397 |
|
def set_integrator(self, Integrator, non_Gaussian_reduction=0.9): |
|
398 |
|
self.gint = Integrator(self.hull, self.shell, non_Gaussian_reduction) |
|
399 |
|
|
|
400 |
|
def fire(self, ns, use_MC=False): |
|
401 |
|
nodes = self.hull.fire(ns, use_MC=use_MC) |
|
402 |
|
if nodes is not None: |
|
403 |
|
return nodes |
|
404 |
|
else: |
|
405 |
|
return self.boom(ns) |
|
406 |
|
|
|
407 |
|
def boom(self, ns, use_MC=False): |
|
408 |
|
if use_MC: |
|
409 |
|
self.outside_dist.set_bounds(self.get_R()) |
|
410 |
|
nodes_G = self.outside_dist.rvs(ns) |
|
411 |
|
else: |
|
412 |
|
# rand_dir: prepare ns random directions on a unit d-sphere |
|
413 |
|
rand_dir = sball.get_random_directions(ns, self.sample.nvar) #random directions |
|
414 |
|
|
|
415 |
|
# maximum radius, where norm.pdf() wasn't zero |
|
416 |
|
# -38.575500173381374935388521407730877399444580 |
|
417 |
|
# don't ask me what the magic python use to distinguish |
|
418 |
|
# digits after double precision |
|
419 |
|
max_R_ever = -38.5755 |
|
420 |
|
|
|
421 |
|
r = np.linspace(self.get_R(), max_R_ever, ns, endpoint=True) |
|
422 |
|
nodes_G = rand_dir*r[:,None] |
|
423 |
|
|
|
424 |
|
nodes = self.sample.f_model.new_sample(nodes_G, space='G') |
|
425 |
|
return nodes |
|
426 |
|
|
|
427 |
|
def get_orth_outside(self): |
|
428 |
|
if self.hull.space == 'G': |
|
429 |
|
return self.hull.get_orth_outside() |
|
430 |
|
else: |
|
431 |
|
#č bude to horší jak s-ball, ale budiž. |
|
432 |
|
x = np.full(self.sample.nvar, self.get_R()) |
|
433 |
|
return calculate_brick_complement_probability(-x, x) |
|
434 |
|
|
|
435 |
|
def get_2FORM_outside(self): |
|
436 |
|
if self.hull.space == 'G': |
|
437 |
|
return self.hull.get_2FORM_outside() |
|
438 |
|
else: |
|
439 |
|
#č nebudem do toho michat nic dalšího. |
|
440 |
|
#č Když 2FORM, tak 2FORM! |
|
441 |
|
return 2 * stats.norm.sf(self.get_R()) |
|
442 |
|
|
|
443 |
|
def get_FORM_outside(self): |
|
444 |
|
if self.hull.space == 'G': |
|
445 |
|
return stats.norm.sf(self.get_r()) |
|
446 |
|
else: |
|
447 |
|
return stats.norm.sf(self.get_R()) |
|
448 |
|
|
|
449 |
|
def get_R(self): |
|
450 |
|
sum_squared = np.sum(np.square(self.sample.G), axis=1) |
|
451 |
|
#index = np.argmax(sum_squared) |
|
452 |
|
return np.sqrt(np.nanmax(sum_squared)) |
|
453 |
|
|
|
454 |
|
def get_r(self): |
|
455 |
|
"calculates minimal signed distance to planes. Can therefore be negative" |
|
456 |
|
#return -np.nanmax(self.hull.b) |
|
457 |
|
if self.hull.space == 'G': |
|
458 |
|
return self.hull.get_r() |
|
459 |
|
else: |
|
460 |
|
#č get_design_points() nemusí být. |
|
461 |
|
#č QHull může nemít dostatek teček |
|
462 |
|
try: |
|
463 |
|
hull_points = self.hull.get_design_points() |
|
464 |
|
sum_squared = np.sum(np.square(hull_points.G), axis=1) |
|
465 |
|
hull_r = np.sqrt(np.nanmin(sum_squared)) |
|
466 |
|
except BaseException as e: |
|
467 |
|
msg = "cannot get hull points from the convex hull" |
|
468 |
|
print(self.__class__.__name__ +":", msg, repr(e)) |
|
469 |
|
hull_r = np.inf |
|
470 |
|
|
|
471 |
|
|
|
472 |
|
# ask our experimentation team |
|
473 |
|
gint_r = self.gint.get_r() |
|
474 |
|
|
|
475 |
|
#č podle mně, nemůže se stat, že by metoda vratila: |
|
476 |
|
#č 1. nenůlový poloměr a že by dokonce i centralní bod byl venku. |
|
477 |
|
#č 2. poloměr větší jak R |
|
478 |
|
#č Odpovědnost za to kladu na gint. |
|
479 |
|
return min(hull_r, gint_r) |
|
480 |
|
|
|
481 |
|
def get_shell_estimation(self): |
|
482 |
|
shell = self.shell |
|
483 |
|
r = self.get_r() |
|
484 |
|
R = self.get_R() |
|
485 |
|
|
|
486 |
|
if r<0: |
|
487 |
|
shell.set_bounds(0, R) |
|
488 |
|
else: |
|
489 |
|
shell.set_bounds(r, R) |
|
490 |
|
|
|
491 |
|
# shell_estimation -22: inner, -3: shell, -11: outer |
|
492 |
|
shell_estimation = {-22:shell.ps, -3: shell.p_shell, -11: shell.pf} |
|
493 |
|
global_stats = {"nsim":self.sample.nsim, "ndim":self.sample.nvar, \ |
|
494 |
|
"nfacets": self.hull.nsimplex, "r":r, "R":R, \ |
|
495 |
|
"inner":shell.ps, "shell":shell.p_shell, "outer":shell.pf} |
|
496 |
|
global_stats['FORM_outside'] = self.get_FORM_outside() |
|
497 |
|
if self.calculate_2FORM: |
|
498 |
|
global_stats['2FORM_outside'] = self.get_2FORM_outside() |
|
499 |
|
if self.calculate_orth: |
|
500 |
|
global_stats['orth_outside'] = self.get_orth_outside() |
|
501 |
|
return shell_estimation, global_stats |
|
502 |
|
|
|
503 |
|
#č nie |
|
504 |
|
##č pro mně je důležité, aby bylo možné rychle přepinat mezi metodama, |
|
505 |
|
##č aby bylo možné výsledky jednoduše porovnavat. |
|
506 |
|
##č Proto explicitně posílám priznak, jakou metodu použit. |
|
507 |
|
def integrate(self, nis, callback_all=None, callback_outside=None): |
|
508 |
|
#č no to teda disajn třidy je doopravdy hroznej |
|
509 |
|
# .get_shell_estimation() will calculate radiuses and will update shell |
|
510 |
|
shell_estimation, global_stats = self.get_shell_estimation() |
|
511 |
|
# shell_estimation -22: inner, -3: shell, -11: outer |
|
512 |
|
shell_estimation.pop(-3) |
|
513 |
|
# ghull_estimation -22: inner, -21: shell inside, -12: shell outside, -11: outer |
|
514 |
|
ghull_estimation = shell_estimation; del(shell_estimation) |
|
515 |
|
|
|
516 |
|
|
|
517 |
|
shell_ps, shell_pf, stats = self.gint.integrate(nis, callback_all, callback_outside) |
|
518 |
|
ghull_estimation[-21] = shell_ps |
|
519 |
|
ghull_estimation[-12] = shell_pf |
|
520 |
|
global_stats.update(stats) |
|
521 |
|
|
|
522 |
|
# convex_hull_estimation -2: inside, -1: outside |
|
523 |
|
inside = shell_ps + self.shell.ps |
|
524 |
|
outside = shell_pf + self.shell.pf |
|
525 |
|
convex_hull_estimation = {-2: inside, -1: outside} |
|
526 |
|
global_stats["inside"] = inside |
|
527 |
|
global_stats["outside"] = outside |
|
528 |
|
|
|
529 |
|
return ghull_estimation, convex_hull_estimation, global_stats |
|
530 |
|
|
|
531 |
|
|