File wellmet/simplex.py changed (mode: 100644) (index ff793e3..a5dcf55) |
... |
... |
class FinalizedAxis(NamedTuple): |
547 |
547 |
class SensitivityResult(NamedTuple): |
class SensitivityResult(NamedTuple): |
548 |
548 |
global_gradient: np.ndarray |
global_gradient: np.ndarray |
549 |
549 |
sensitivities: np.ndarray |
sensitivities: np.ndarray |
550 |
|
probabilities: dict |
|
|
550 |
|
shares: dict |
551 |
551 |
depths: dict |
depths: dict |
552 |
552 |
vectors:dict |
vectors:dict |
553 |
553 |
coverings:dict |
coverings:dict |
|
... |
... |
class _Sense: |
607 |
607 |
neighbors_masked[id] = neis[neis_mask] |
neighbors_masked[id] = neis[neis_mask] |
608 |
608 |
|
|
609 |
609 |
|
|
|
610 |
|
def get_finalized_supports(sx, finalized_nornal): |
|
611 |
|
ED = sx.tri.points |
|
612 |
|
failsi = sx.sample_box.failsi |
|
613 |
|
simplices = sx.tri.simplices |
|
614 |
|
|
|
615 |
|
point_scope = set() |
|
616 |
|
for key in finalized_nornal.separated_simplices: |
|
617 |
|
point_scope.update(simplices[key]) |
|
618 |
|
|
|
619 |
|
|
|
620 |
|
# set supports |
|
621 |
|
max_red = -np.inf |
|
622 |
|
min_green = np.inf |
|
623 |
|
for point in point_scope: |
|
624 |
|
failure = failsi[point] |
|
625 |
|
value = np.inner(finalized_nornal.normal, ED[point]) |
|
626 |
|
if failure and (value > max_red): |
|
627 |
|
max_red = value |
|
628 |
|
#red_supp = point |
|
629 |
|
elif not failure and (value < min_green): |
|
630 |
|
min_green = value |
|
631 |
|
#green_supp = point |
|
632 |
|
|
|
633 |
|
assert max_red < min_green |
|
634 |
|
|
|
635 |
|
return max_red, min_green |
|
636 |
|
|
610 |
637 |
|
|
611 |
638 |
def perform_sensitivity_analysis(self): |
def perform_sensitivity_analysis(self): |
612 |
639 |
# I'll try to use dual name convention here |
# I'll try to use dual name convention here |
|
... |
... |
class _Sense: |
678 |
705 |
|
|
679 |
706 |
for simplex_id, normal in vectors.items(): |
for simplex_id, normal in vectors.items(): |
680 |
707 |
indices = simplices[simplex_id] |
indices = simplices[simplex_id] |
681 |
|
p_mixed = sx.get_simplex_probability(indices) |
|
|
708 |
|
p_mixed = sx.get_simplex_share(indices) |
682 |
709 |
mixed_probability += p_mixed |
mixed_probability += p_mixed |
683 |
710 |
probabilities[simplex_id] = p_mixed |
probabilities[simplex_id] = p_mixed |
684 |
711 |
|
|
|
... |
... |
class SeparationAxis: |
1178 |
1205 |
|
|
1179 |
1206 |
|
|
1180 |
1207 |
|
|
|
1208 |
|
|
|
1209 |
|
|
1181 |
1210 |
|
|
1182 |
|
|
|
1183 |
|
|
|
1184 |
|
|
|
|
1211 |
|
|
1185 |
1212 |
|
|
1186 |
1213 |
|
|
1187 |
1214 |
|
|
|
... |
... |
class GaussCubatureIntegration(_Triangulation, _Sense): |
2988 |
3015 |
|
|
2989 |
3016 |
|
|
2990 |
3017 |
def integrate_simplex(sx, indices): |
def integrate_simplex(sx, indices): |
2991 |
|
|
|
2992 |
3018 |
sx.newly_estimated += 1 |
sx.newly_estimated += 1 |
|
3019 |
|
return sx._preintegrate_simplex(indices) |
2993 |
3020 |
|
|
|
3021 |
|
def _preintegrate_simplex(sx, indices): |
2994 |
3022 |
vertices_model = sx.tri.points[indices] |
vertices_model = sx.tri.points[indices] |
2995 |
3023 |
|
|
2996 |
3024 |
vol = quadpy.tn.get_vol(vertices_model) |
vol = quadpy.tn.get_vol(vertices_model) |
|
... |
... |
class GaussCubatureIntegration(_Triangulation, _Sense): |
3028 |
3056 |
p_mixed, pfv, pfw, pf = sx.mixed_simplices[key] |
p_mixed, pfv, pfw, pf = sx.mixed_simplices[key] |
3029 |
3057 |
return p_mixed / sx._norm_pdf_C |
return p_mixed / sx._norm_pdf_C |
3030 |
3058 |
|
|
|
3059 |
|
# share = p_simplex * V**((ndim-1)/ndim) |
|
3060 |
|
# component of sensitivity intagral f(x)dS |
|
3061 |
|
def get_simplex_share(sx, indices): |
|
3062 |
|
vol, fx = sx._preintegrate_simplex(indices) |
|
3063 |
|
#č matematicky korektně musíme hustoty ještě vydělit |
|
3064 |
|
#sx._norm_pdf_C |
|
3065 |
|
#č ale u těch citlovostí jde nám jen o podíly |
|
3066 |
|
#č a nemusíme provadět jednu operaci navíc |
|
3067 |
|
ndim = len(indices) - 1 |
|
3068 |
|
return fx * vol**((ndim-1)/ndim) |
|
3069 |
|
|
3031 |
3070 |
|
|
3032 |
3071 |
def get_pf_estimation(sx): |
def get_pf_estimation(sx): |
3033 |
3072 |
if len(sx.tri.points) < sx.sample_box.nsim: |
if len(sx.tri.points) < sx.sample_box.nsim: |