iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/cli_example.py (6cd17c9e68ac9734b1881157c553856bd2e034de) (2084 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8

import numpy as np
import scipy.stats as stats

from wellmet.samplebox import SampleBox
from wellmet import f_models


# 1. Set up probability distribution
# Standard Gaussian variables, 2D
#f = f_models.SNorm(2)
# Just normal variables
f = f_models.Norm(mean=[-1, 0], std=[2, 1])
# Independent non-Gaussian variables
#f = f_models.UnCorD((stats.gumbel_r, stats.uniform))
# Correlated:
# Nataf model with correlations of the respective _Gaussian_ marginals
#f = f_models.Nataf((stats.gumbel_r, stats.weibull_min(c=1.5)), [[1,0.8], [0.8,1]])

# 2. Define LSF function
def my_problem(input_sample):
    # get real (physical) space coordinates
    # X is a numpy array with shape (nsim, ndim)
    # the algorithm normally sends (1, ndim) sample
    X = input_sample.R
    # LSF
    g = X[:, 0] - X[:, 1] + 3
    # we should return an instance of SampleBox class
    # it stores coordinates along with LSF calculation result
    # with kind of signature
    return SampleBox(input_sample, g, "my_problem")






# 3. Prepare storage
# no need to store anything
#sample_box = SampleBox(f)

# keep samples and estimations continiously stored 
from wellmet import reader
sample_box = reader.Reader("meow_problem", f)

# 4. Setup the algorithm
from wellmet.dicebox.circumtri import CirQTri
import quadpy

scheme = quadpy.tn.stroud_tn_3_6b(sample_box.nvar)
convex_hull_degree = 5 # degreee of Grundmann-Möller cubature scheme
q = 1 # should be > 0. Greater values slightly enforces exploration
screening_rate = 0 # 10 means to sacrifice every tenth sample for screening
box = CirQTri(sample_box, scheme, convex_hull_degree, q, screening_rate)


# 5. Here we go!
for i in range(20):
    # ask where to sample the next point
    # next_node is an f_model instance
    next_node = box()
    # call LSF
    new_sample = my_problem(next_node)
    # put calculation result to the box
    box.add_sample(new_sample)
    
print(box.get_pf_estimation())
sensitivities_results = box.Tri.perform_sensitivity_analysis()
print(sensitivities_results.sensitivities)




Mode Type Size Ref File
100644 blob 26 aed04ad7c97da717e759111aa8dd7cd48768647f .gitignore
100644 blob 1093 263306d87c51114b1320be2ee3277ea0bff99b1f LICENSE
100644 blob 5165 c9a2ecc2110771d29b800aee6152fd3a3d239e80 README.md
100644 blob 2084 6cd17c9e68ac9734b1881157c553856bd2e034de cli_example.py
100644 blob 1257 52ad8257fd62a3dc12f8d08eaf73a7cfb5d392b8 gui_example.py
100644 blob 81 fed528d4a7a148fd0bf0b0198a6461f8c91b87e9 pyproject.toml
100644 blob 795 7f9286ab2094e7dddfb6e1c5e49396fa7d79e67c setup.cfg
100644 blob 54 ee2a480d94ead7579fdddabda39a672e31b90ced setup.py
040000 tree - c71333f92448098d44613a5de568eb3f3788abbe wellmet
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main