iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/misc.py (6ea8dc8f50a656c48f786d5a00bd6398276c9741) (2004 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8

import numpy as np

from . import sball # for Isocurves

def isolevels_2d(pdf, weighting_pdf_const, r_levels, from_top=None):
    """
    weighting_pdf_const = 1 / (xmax - xmin) / (ymax - ymin)
    """
    s_ball = sball.Sball(2) # nvar=2
    p_levels = []
    for r in r_levels:
        p_levels.append(1 - s_ball.get_pf(r))
    
    return isolevels(pdf, weighting_pdf_const, p_levels, from_top)




def isolevels(pdf, weighting_pdf_const, p_levels, from_top=None):
    """
    weighting_pdf_const = 1 / (xmax - xmin) / (ymax - ymin)
    """
    #č třeba P prostor doopravdy zlobí, takže zkusím nějak tak
    if from_top is None:
        weights = pdf / weighting_pdf_const
        p_all = np.sum(weights) / len(pdf)
        #č prečo víme, že celková pravděpodobnost může bejt nekoněčně velká
        if p_all <= 1:
            from_top = True
        else:
            from_top = False
            
    max_pdf = np.max(pdf)
    pdf_levels = []
    if from_top:
        # descending
        sorted_pdf = np.flip(np.sort(pdf))
        p_cumsum = np.cumsum(sorted_pdf) / weighting_pdf_const / len(pdf)
        for p in p_levels:
            # little bit tricky, didn't find numpy method for this
            mask = p_cumsum <= p
            level_down_bound = np.max(sorted_pdf[~mask], initial=0)
            level_up_bound = np.min(sorted_pdf[mask], initial=max_pdf)
            pdf_levels.append((level_down_bound + level_up_bound) / 2)
            
    else: # from bottom
        sorted_pdf = np.sort(pdf)
        p_cumsum = np.cumsum(sorted_pdf) / weighting_pdf_const / len(pdf)
        for p in p_levels:
            # little bit tricky, didn't find numpy method for this
            mask = p_cumsum <= 1-p
            level_down_bound = np.max(sorted_pdf[mask], initial=0)
            level_up_bound = np.min(sorted_pdf[~mask], initial=max_pdf)
            pdf_levels.append((level_down_bound + level_up_bound) / 2)

    return pdf_levels


Mode Type Size Ref File
100644 blob 18023 dbc921a5ff53594363973972d53c5d572d2826d1 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 73368 3d245b8568158ac63c80fa0847631776a140db0f blackbox.py
100644 blob 11243 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d candybox.py
100644 blob 53090 36d72557a0b012a8b30888e26a425a507929bfff dicebox.py
100644 blob 47075 3ad01c91c9781b03caf9d0365932c12eb1ccec5c estimation.py
100644 blob 34189 e2b43f8f1a46cfc950347d6106ff3cba9ffe5f0c f_models.py
100644 blob 31025 70bab60405bfe783a2f7a9f2c41b7c1629d3d474 g_models.py
100644 blob 42845 e66a644b3f32e3a7b2556eebe581ef7ef6a638d7 gl_plot.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 29393 96162a5d181b8307507ba2f44bafe984aa939163 lukiskon.py
100644 blob 2004 6ea8dc8f50a656c48f786d5a00bd6398276c9741 misc.py
100644 blob 10489 1f6dd06a036fdc4ba6a7e6d61ac0b84e8ad3a4c1 mplot.py
100644 blob 1366 993a88f239b6304e48eb519c20a640f28055d7c9 plot.py
100644 blob 2807 1feb1d43e90e027f35bbd0a6730ab18501cef63a plotly_plot.py
100644 blob 108414 0582ff11304f24e05f5f13bf611a17d85cb37254 qt_plot.py
100644 blob 6304 7fc6ac75e415df43af5b7aa9d6d1848aa5d0963d reader.py
100644 blob 4284 a0e0b4e593204ff6254f23a67652804db07800a6 samplebox.py
100644 blob 5553 bac994ae58f1df80c7f8b3f33955af5402f5a4f3 sball.py
100644 blob 21623 281aef80556b8d22842b8659f6f0b7dab0ad71af shapeshare.py
100644 blob 19837 5517d072307bd4c5a462a20943e3a354f32a9589 simplex.py
100644 blob 10357 80c60a409f7b1eb0592d1276dff7aacb065a0f84 stm_df.py
100644 blob 3411 526104441da7029c83ff7c5037ae6b0dbc9a118d testcases_2D.py
100644 blob 22048 4a6014ca5255aa96059ff9ed5a7e29df98d26ffc whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main