iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/g_models.py (3daee87ec0bc670207356490e16f200fed0d4fc4) (35721 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8


"""
 cs: 
 

 en: 
 data should be pandas compatible, i.e. 
 nsim, nvar = data.shape

g_model returns SampleBox object, which actually contains:
1. what-was-on-input
2. values of perfomance function
AND 3. so called gm_signature - some string to identify data
and do not let them be mixed up.
Currently WhiteBox treat as gm_signature __name__ attribute (free functions has it),
otherwise repr(). Classes supposed to define __repr__ function for correct work.

Fence off!
Some of performance functions (g_models) are able to draw
failure region boundary, in this case 
.get_2D_R_boundary(nrod, xlim, ylim) is defined.
    nrod - number of "rods" in "fencing"
    xlim, ylim describes your viewport, plotting terminal, whatever
    g_model uses these parameters only for inspiration,
    g_model is allowed to ignore them
    xlim = (xmin, xmax)
    ylim = (ymin, ymax)
    
    returns tuple (or list) of R samples
    
    
    
"""

import numpy as np
from .f_models import Ingot
from .samplebox import SampleBox


class GetQuadrantBoundary2D:
    """
    sebemenší pomocná třida pro vykreslení hranici L tvaru
    """
    def __init__(self, center_point=(0,0), quadrant='I'):
        """
        quadrants also сэрегъёс-compatible
        #### CORNERS 2D #####
        # print(сэрегъёс)
        # numbering:
        #    2  |  3
        #  -----|-----
        #    0  |  1
        """
        self.center_point = center_point
        self.quadrant = quadrant
        
    def __call__(self, nrod=100, xlim=(-5,5), ylim=(-5,5)):
        xc, yc = self.center_point
        xmin = min(*xlim, xc-1)
        xmax = max(*xlim, xc+1)
        ymin = min(*ylim, yc-1)
        ymax = max(*ylim, yc+1)
            
        nrod = int(nrod/2)
            # mně nic hezčího prostě nenapadá(
        if self.quadrant in ('I', 3):
            xbound = np.append(np.full(nrod, xc), np.linspace(xc, xmax, nrod, endpoint=True))
            ybound = np.append(np.linspace(ymax, yc, nrod, endpoint=True), np.full(nrod, yc))
        elif self.quadrant in ('II', 2):
            xbound = np.append(np.linspace(xmin, xc, nrod, endpoint=True), np.full(nrod, xc))
            ybound = np.append(np.full(nrod, yc), np.linspace(yc, ymax, nrod, endpoint=True))
        elif self.quadrant in ('III', 0):
            xbound = np.append(np.linspace(xmin, xc, nrod, endpoint=True), np.full(nrod, xc))
            ybound = np.append(np.full(nrod, yc), np.linspace(yc, ymin, nrod, endpoint=True))
        else: # self.quadrant in ('IV', 1):
            xbound = np.append(np.full(nrod, xc), np.linspace(xc, xmax, nrod, endpoint=True))
            ybound = np.append(np.linspace(ymin, yc, nrod, endpoint=True), np.full(nrod, yc))
        
    
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.vstack((xbound, ybound)).T
        # tuple of tuple
        return (Ingot(bound_R),)
        
        

def get_R_coordinates(input_sample, envar=0):
    """
    Tohle je pomocná funkce, vrácí g_modelům numpy 2d pole s daty
    
    envar - zadavejte, pokud chcete zkontrolovat 
    počet náhodných proměnných
    envar like estimated number of variables
    """
    # is it sample object?
    try:
        if envar > 0 and input_sample.nvar != envar:
            raise ValueError('%sD data expected, but %sD sample given'% (envar, input_sample.nvar))
        else:
            return input_sample.R
        
    # it is not an sample object, 
    # but maybe numpy can handle this?
    except AttributeError:
        sample = np.atleast_2d(np.array(input_sample))
        # invar like input number of variables
        nsim, invar = sample.shape
        if envar > 0 and invar != envar:
            raise ValueError('%sD data expected, but %sD sample given'% (envar, invar))
        else:
            return sample




class Linear_nD:
    """
    Class takes for inicialization tuple of betas 
    Betas are coeffitients in sense of Regression Analysis
    
     g= a*X1 + b*X2 + c
     becames
     gm = Linear_nD(betas=(a,b,c))
     gm(samples)
     gm.get_2D_R_boundary(nrod, xlim) returns
     xbounds a ybounds zabalené do tuplu, ty zabalené do listu
    """
    
    def __init__(self, betas):
        self._betas = betas
        
        # sign
    def __repr__(self):
        return 'Linear_nD(%s)' % repr(self._betas)
        
    def __call__(self, input_sample):
        selfnvar = len(self._betas)-1
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, selfnvar)
        # teďkom zasahujeme přímo do tohoto pole
        sim = sample.copy()
        for i in range(selfnvar):
            sim[:,i] = sim[:,i]*self._betas[i]
        g = np.sum(sim, axis=1) + self._betas[-1]
        return SampleBox(input_sample, g, repr(self))
    
    
    
    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        xbound = np.linspace(xlim[0], xlim[1], nrod, endpoint=True)
    
        selfnvar = len(self._betas)-1
        # g= a*X1 + b*X2 + 0*X3 + 0*X4 + ... + c
        a = self._betas[0]
        b = self._betas[1]
        c = self._betas[-1]
        
        # 1D je spíše vtip
        if selfnvar == 1:
            return (-c/a)
        else:
            # sample compatible
            # малы транспонировать кароно? Озьы кулэ!
            bound_R = np.array((xbound, -c/b + (-a/b)*xbound)).T
            # tuple of tuple
            return (Ingot(bound_R),)
        
        
class Z_sum:
    """
    suma velicin plus beta*sqrt(Nvar. )
    Pro IID Gaussian ma tohle ind. spol. beta = beta
    The same as Linear_nD, but defined via 
    beta in sense of reliability index
    """
    def __init__(self, nvar, beta_exact):
        self._nvar = nvar
        self._beta_exact = beta_exact
        
    # sign
    def __repr__(self):
        return 'Z_sum(%s, %s)' % (repr(self._nvar), repr(self._beta_exact))
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, self._nvar)
        g = np.sum(sample, axis=1) + self._beta_exact * np.sqrt(self._nvar) 
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        xbound = np.linspace(xlim[0], xlim[1], nrod, endpoint=True)
    
        # g= a*X1 + b*X2 + 0*X3 + 0*X4 + ... + c
        a = 1
        b = 1
        c = self._beta_exact * np.sqrt(self._nvar) 
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((xbound, -c/b + (-a/b)*xbound)).T
        # tuple of tuple
        return (Ingot(bound_R),)

      
        
class Z_prod:
    """
    soucin velicin plus nějaká konstanta 
    # g= s * (X1 * X2 * X3 * X4 + c )
    """
    # tenhle model ani nvar si neukladá, tohle vůbec neřeší
    def __init__(self, const=0, sign=1):
        self._const = const
        self._sign = sign
        
    # sign
    def __repr__(self):
        return 'Z_prod(%s, %s)' % (self._const, self._sign)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        g = self._sign * (np.prod(sample, axis=1) + self._const)
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        # g= X1 * X2 + c
        #
        # a^2 = 2*X^2 
        # a=b= X * sqrt(2)
        # a^2 = 2*c
        # r = a*b / np.sqrt(b**2 * np.cos(phi)**2 - a**2 * np.sin(phi)**2)
        
        c = self._const
        _c = np.sign(c)
        #č náš oblibený trik - hranici nakreslime pomoci polárních souřádnic
        phi = np.linspace(0.25*np.pi, (0.25+_c/2)*np.pi, nrod , endpoint=False)[1:]
        r = np.sqrt(2*c / (np.sin(phi)**2 - np.cos(phi)**2))
        bound_x_left = r * np.cos(phi+np.pi/4)
        bound_y_left = r * np.sin(phi+np.pi/4)
        
        phi = np.linspace(-0.75*np.pi, (_c/2-0.75)*np.pi, nrod , endpoint=False)[1:]
        r = np.sqrt(2*c / (np.sin(phi)**2 - np.cos(phi)**2))
        bound_x_right = r * np.cos(phi+np.pi/4)
        bound_y_right = r * np.sin(phi+np.pi/4)
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R_left = np.array((bound_x_left, bound_y_left)).T
        bound_R_right = np.array((bound_x_right, bound_y_right)).T
        # tuple of samples
        return (Ingot(bound_R_left), Ingot(bound_R_right))
             
        

class Z_min:
    """
    min velicin plus nějaká konstanta 
    # g= min(X1, X2, X3, X4) + c
    """
    def __init__(self, const):
        self._const = const
        self.get_2D_R_boundary = GetQuadrantBoundary2D(center_point=(-const,-const), quadrant='I')
        
    # sign
    def __repr__(self):
        return 'Z_min(%s)' % repr(self._const)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        g = np.min(sample, axis=1) + self._const
        return SampleBox(input_sample, g, repr(self))
    
    # samotná "volaná" se určí v __init__
    # trik aby se nezabindila
    @staticmethod
    def get_2D_R_boundary(): return None
        

class Z_max:
    """
    max velicin plus nějaká konstanta 
    # g= max(X1, X2, X3, X4) + c
    """
    def __init__(self, const):
        self._const = const
        self.get_2D_R_boundary = GetQuadrantBoundary2D(center_point=(-const,-const), quadrant='III')
        
    # sign
    def __repr__(self):
        return 'Z_max(%s)' % repr(self._const)
        
    def __call__(self, input_sample):
        #č očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        g = np.max(sample, axis=1) + self._const
        return SampleBox(input_sample, g, repr(self))
    
    #č samotná "volaná" se určí v __init__
    #č trik aby se nezabindila
    @staticmethod
    def get_2D_R_boundary(): return None


class Z_sumexp:
    """
    """
    def __init__(self, const):
        self._const = const
        
    # sign
    def __repr__(self):
        return 'Z_sumexp(%s)' % repr(self._const)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        g = np.sum(np.exp(-(sample**2)), axis=1) + self._const
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), ylim=(-5,5)):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        
        def e_bound(xbound): return np.sqrt(-np.log(-self._const - np.exp(-xbound**2)))
        
        # let's mirror about (s,s) point
        # 0 = 2*e^(-s^2)+c
        # log(-c/2) = -s^2
        # s = sqrt(-log(-c/2))
        s = np.sqrt(-np.log(-self._const/2))
        xmin = min(*xlim, -s-1)
        xmax = max(*xlim, s+1)
        ymin = min(*ylim, -s-1)
        ymax = max(*ylim, s+1)
        
        xb_1eft = np.linspace(xmin, -s, nrod, endpoint=False)
        xb_right = np.linspace(xmax, s, nrod, endpoint=False)
        yb_up = np.linspace(s, ymax, nrod)
        yb_down = np.linspace(-s, ymin, nrod)
        
        
        # numerace je náhodná
        bound_R_1 = np.array((np.append(xb_1eft, -e_bound(yb_up)), np.append(e_bound(xb_1eft), yb_up))).T
        bound_R_2 = np.array((np.append(xb_1eft, -e_bound(yb_down)), np.append(-e_bound(xb_1eft), yb_down))).T
        bound_R_3 = np.array((np.append(xb_right, e_bound(yb_up)), np.append(e_bound(xb_right), yb_up))).T
        bound_R_4 = np.array((np.append(xb_right, e_bound(yb_down)), np.append(-e_bound(xb_right), yb_down))).T
        
        # sample compatible
        # tuple of samples
        return (Ingot(bound_R_1), Ingot(bound_R_2), Ingot(bound_R_3), Ingot(bound_R_4))
              
        


class S_ballSin2D:
    """
    c = 0.5 # wave amplitude in Gaussian space
    d = 3.0 # average of sine fiunction in Gaussian space
    k = 6   # number of sine waves (design points)
    """
    def __init__(self, c, d, k):
        self._c = c
        self._d = d
        self._k = k
        
    # sign
    def __repr__(self):
        return 'S_ballSin2D(%s,%s,%s)' % (self._c, self._d, self._k)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        
        R2 = np.sum(np.square(sample), axis=1)
        R = np.sqrt(R2)
        phi = np.arctan2(sample[:,1] , sample[:,0])  #arctan2(y,x)
        rmax = self._c * np.sin(self._k * phi) + self._d
        g = rmax - R 
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        phi = np.linspace(0, 6.283185307, nrod , endpoint=True)
        r = self._c * np.sin(self._k * phi) + self._d
        bound_x = r * np.cos(phi)
        bound_y = r * np.sin(phi)
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((bound_x, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),)


class Z_sumsq:
    """
    """
    def __init__(self, const):
        self._const = const
        
    # sign
    def __repr__(self):
        return 'Z_sumsq(%s)' % repr(self._const)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        g = np.sum(sample**2, axis=1) - self._const
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        phi = np.linspace(0, 2*np.pi, nrod , endpoint=True)
        r = np.sqrt(self._const)
        bound_x = r * np.cos(phi)
        bound_y = r * np.sin(phi)
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((bound_x, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),)



class S_ball:
    """
    Find 10 differences with Z_sumsq
    """
    def __init__(self, r):
        self._r = r
        
    # sign
    def __repr__(self):
        return 'S_ball(%s)' % repr(self._r)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        R2 = np.sum(np.square(sample), axis=1)
        g = self._r**2 - R2
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        phi = np.linspace(0, 6.283185307, nrod, endpoint=True)
        r = self._r
        bound_x = r * np.cos(phi)
        bound_y = r * np.sin(phi)
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((bound_x, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),)


class ConicSection:
    """
    """
    def __init__(self, l, e, teta=0, c=(0,0), sign=1):
        self._l = l
        self._e = e
        self._teta = teta
        self._c = c
        self._sign = sign
        
    # sign
    def __repr__(self):
        return 'ConicSection(%s, %s, %s, %s, %s)' % (repr(self._l), repr(self._e), repr(self._teta), repr(self._c), repr(self._sign))
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        x_i, y_i, *__ = (*sample.T,)
        x = x_i - self._c[0]
        y = y_i - self._c[1]
        phi = np.arctan2(y, x)# zde musí bejt to obracené pořádí
        
        r = np.sqrt(np.square(x) + np.square(y))
        r_bound = abs(self._l / (1 - self._e * np.cos(phi-self._teta)))
        g = self._sign * (r - r_bound)
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        if self._e == 1:
            phi = np.linspace(self._teta, 6.283185307+self._teta, nrod, endpoint=False)[1:]
        else:
            phi = np.linspace(0, 6.283185307, nrod, endpoint=True)
            
        r_bound = abs(self._l / (1 - self._e * np.cos(phi-self._teta)))
        
        bound_x = (r_bound * np.cos(phi)) + self._c[0]
        bound_y = (r_bound * np.sin(phi)) + self._c[1]
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((bound_x, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),)


class Exp_P:
    """
        g = y - 1./np.exp(x)**5
    """
    def __init__(self, k=1., pow=5):
        self._k = k
        self._pow = pow
        
    # sign
    def __repr__(self):
        return 'Exp_P(%s, %s)' % (self._k, self._pow)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        
        x = sample[:,0]
        y = sample[:,1]
        g = y - self._k/np.exp(x)**self._pow
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        xbound = np.linspace(xlim[0], xlim[1], nrod, endpoint=True)
        
        bound_y = self._k/np.exp(xbound)**self._pow
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((xbound, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),)
            
            
class Sin2D:
    """
    """
    def __init__(self, kx=-1/4., ky=-1, kxsin=5, const=5):
        self._kx = kx
        self._ky = ky
        self._kxsin = kxsin
        self._const = const
        
    # sign
    def __repr__(self):
        return 'Sin2D(%s, %s, %s, %s)' % (self._kx, self._ky, self._kxsin, self._const)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        
        x = sample[:,0]
        y = sample[:,1]
        g = self._kx * x + self._ky * y + np.sin(self._kxsin*x) + self._const
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        xbound = np.linspace(xlim[0], xlim[1], nrod, endpoint=True)
        
        bound_y = -(self._kx * xbound  + np.sin(self._kxsin * xbound) + self._const) / self._ky
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((xbound, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),) 



class Prod_FourBetas:
    """
    g = beta^2/2 - |x1 * x2|
    """
    def __init__(self, beta=2.0):
        self._beta = beta
        
    # sign
    def __repr__(self):
        return 'Prod_FourBetas(beta=%s)' % repr(self._beta)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)
        
        g = self._beta**2/2.0 - np.prod(np.abs(sample), axis=1)
        return SampleBox(input_sample, g, repr(self))

    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), ylim=(-5,5)):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        # zde vynechal abs(), ale úpravil znaménka dolů
        # don't ask me why. Ачим но уг тодӥськы.
        def e_bound(xbound): return self._beta**2/2 / xbound
        
        # let's mirror about (s,s) point
        # 0 = beta^2/2 - s^2
        # beta^2/2 = s^2
        # s = beta/sqrt(2)
        s = self._beta / np.sqrt(2)
        xmin = min(*xlim, -s-1)
        xmax = max(*xlim, s+1)
        ymin = min(*ylim, -s-1)
        ymax = max(*ylim, s+1)
        
        xb_1eft = np.linspace(xmin, -s, nrod, endpoint=False)
        xb_right = np.linspace(xmax, s, nrod, endpoint=False)
        yb_up = np.linspace(s, ymax, nrod)
        yb_down = np.linspace(-s, ymin, nrod)
        
        
        # numerace je náhodná. Je tu hračka se znaménky.
        bound_R_1 = np.array((np.append(xb_1eft, -e_bound(yb_up)), np.append(-e_bound(xb_1eft), yb_up))).T
        bound_R_2 = np.array((np.append(xb_1eft, e_bound(yb_down)), np.append(e_bound(xb_1eft), yb_down))).T
        bound_R_3 = np.array((np.append(xb_right, e_bound(yb_up)), np.append(e_bound(xb_right), yb_up))).T
        bound_R_4 = np.array((np.append(xb_right, -e_bound(yb_down)), np.append(-e_bound(xb_right), yb_down))).T
        
        # sample compatible
        # tuple of samples
        return (Ingot(bound_R_1), Ingot(bound_R_2), Ingot(bound_R_3), Ingot(bound_R_4))
        
        
        
class BlackSwan2D:
    """
        a = 2.0 # boundary for x1
        b = 5.0 # boundary for x2
        y = np.where(sim[:,0] <= a, sim[:,0], sim[:,1])
        # pro x1 <= a   y = x1
        # pro x1 >  a   y = x2
        g = b - y # failure for b<y
    """
    def __init__(self, a=2.0, b=5.0):
        self._a = a
        self._b = b
        if a<b:
            self.get_2D_R_boundary = GetQuadrantBoundary2D(center_point=(a, b), quadrant='I')
        
    # sign
    def __repr__(self):
        return 'BlackSwan2D(%s, %s)' % (self._a, self._b)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        
        y = np.where(sample[:,0] <= self._a, sample[:,0], sample[:,1])
        g = self._b - y # failure for b<y
        return SampleBox(input_sample, g, repr(self))


    # samotná "volaná" se určí v __init__
    # trik aby se nezabindila
    @staticmethod
    def get_2D_R_boundary(*args, **kwargs): 
        # jako kdyby .get_2D_R_boundary nebyla vůbec definována.
        raise AttributeError
        


class Metaballs2D:
    """
    """
    def __init__(self, const=5):
        # sebemenší parametrizace
        self._const = const
        
    # sign
    def __repr__(self):
        return 'Metaballs2D(%s)' % repr(self._const)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        
        x1 = sample[:,0]  
        x2 = sample[:,1]
        
        # auxiliary variables
        y1 = 4/9*(x1 + 2  )**2 + 1/25 * (x2    )**2 
        y2 = 1/4*(x1 - 2.5)**2 + 1/25 * (x2-0.5)**2 
        g = 30.0/( y1**2 + 1.0 ) + 20.0/( y2**2 + 1.0 ) - self._const
        return SampleBox(input_sample, g, repr(self))
    
    
    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        #č myšlenkou je vygenerovat rovnoměrně spoustu teček v každém směru,
        #č pro každé phi zvolit nejblížší k nule r-ko
        phi = np.linspace(0, 6.283185307, nrod , endpoint=True)
        #č obecná hranice poruchy ӧвӧл :(
        #č tyhle meze vícemené platí jen pro const=5
        r = np.linspace(4, 8, nrod//2 , endpoint=True)
        X = np.atleast_2d(r).T @ np.cos(np.atleast_2d(phi))
        Y = np.atleast_2d(r).T @ np.sin(np.atleast_2d(phi))
        # auxiliary variables
        y1 = 4/9*(X + 2  )**2 + 1/25 * (Y    )**2 
        y2 = 1/4*(X - 2.5)**2 + 1/25 * (Y-0.5)**2 
        g = 30.0/( y1**2 + 1.0 ) + 20.0/( y2**2 + 1.0 ) - self._const
        
        #č nechapu úplně přoč tam není axis=1, ale O, ale to funguje
        arg_r = np.argmin(np.abs(g), axis=0)
        bound_r = r[arg_r]
        
        bound_x = bound_r * np.cos(phi)
        bound_y = bound_r * np.sin(phi)
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((bound_x, bound_y)).T
        # tuple of samples
        return (Ingot(bound_R),)
        
        
class Logistic2D:
    """
    """
    def __init__(self, c1=5, c2=4, easy_version=True):
        # sebemenší parametrizace
        self._c1 = c1
        self._c2 = c2
        self.easy_version = easy_version
        
        # For both versions
        
        self.get_2D_R_boundary = GetQuadrantBoundary2D(center_point=(c1,-c2), quadrant='II')
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        
        x1 = sample[:,0]  
        x2 = sample[:,1]
        
        # auxiliary variables
        y1 = self._c1 - x1
        y2 = self._c2 + x2
        y3 = 1.0/(1+np.exp(-2.0*y2)) - 0.5
        
        if self.easy_version:
            g = np.minimum(y1,y2)  # easy version for SuS
        else:
            g = np.minimum(y1,y3)  # difficult version for SuS
        return SampleBox(input_sample, g, repr(self))
    
    def __repr__(self):
        return 'Logistic2D(%s, %s, easy_version=%s)'%(self._c1, self._c2, self.easy_version)
    
    def pf_expression(self, f_model):
        """
        We trying to say how to calculate pf
        to someone, who will know actual distribution 
        """
        a = f_model.marginals[0].sf(self._c1)
        b = f_model.marginals[1].cdf(-self._c2)
        # subtract the twice calculated intersection
        return a + b - a*b, 'exact solution'
    
    @staticmethod
    def get_2D_R_boundary(): return None
    
        
        
class CosExp2D:
    """
    """
    def __init__(self, s=5):
        # sebemenší parametrizace
        self._s = s
        
    # sign
    def __repr__(self):
        return 'CosExp2D(s=%s)' % repr(self._s)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)

        # auxiliary variables
        s = self._s
        # g = cos((np.exp(-xm-s  ))*xm)   * np.exp(-(x +s  )/3)
        g = np.cos( ( np.exp(-sample[:,0] - s ) )*sample[:,0])   * np.exp( -(sample[:,0] + s  )/3 )        
        return SampleBox(input_sample, g, repr(self))
        
    def pf_expression(self, f):
        xs, rad_max = self._get_x()
        sign = np.sign(np.cos(rad_max))
        #sign = (k_max + 1) // 2 - 1
        xs.reverse()
        print(xs)
        cdfs = f.marginals[0].cdf(xs)
        print(cdfs)
        if sign > 0:
            pf = 0
        else:
            pf = 1
        for cdf in cdfs:
            pf += cdf * sign
            sign *= -1
        
        #print(pf)
        return pf, "series calculation"
        
    def _get_x(self, n=10, steps=10):
        ## log(np.pi/4) == -x - s + log(x)
        ## log(rad) + s == -x + log(x)
        ## x-log(x) = -log(rad) - s
        
        #rad = exp(-x-s)*x
        #log(rad/x) = -x -s
        #x = -log(rad/x) - s
        
        # d_rad/dx = -exp(-x-s)*x + exp(-x-s)
        # d_rad/dx = exp(-x-s) * (1-x)
        
        ## d2/dx2 = exp(-x-s) * (x-1) - exp(-x-s)
        ## d2/dx2 = exp(-x-s) * (x-2)
        
        rad_max = np.exp(-self._s - 1)
        #print(rad_max)
        k_max = np.floor(rad_max / np.pi - 1/2)
        k = k_max
        #x = f.marginals[0].ppf(1e-200)
        rad = (k - n - 1 + 1/2) * np.pi
        #x = rad / np.exp(-self._s)
        x = -np.log(abs(rad)) - self._s
        xs = []
        
        for i in range(-n, 2):
            #print(rad)
            for __ in range(steps): # 10 out to be enough for everybody
                x = x + (rad  / np.exp(-x-self._s) - x) / (1-x)
                #print(x)
            xs.append(x)
            rad = (k+i + 1/2) * np.pi
        return xs, rad_max
        
    # Fence off!
    def get_2D_R_boundary(self, nrod=100, xlim=(-5,5), ylim=(-5,5)):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        # it is not mine
        #xa = -4.05229846333861
        #xb = -4.95067172463682
        #xc = -5.37859367619679
        #xd = -5.66345816541508
        #xe = -5.87765022259327
        #xf = -6.04950202015156
        #xg = -6.19309680892552
        
        # ikska
        #xes = (xa, xb, xc, xd, xe, xf, xg)
        xes, __rad_max = self._get_x()
        
        boundaries = []
        ymin, ymax = ylim
        
        for x in xes:
            xbound = np.full(nrod, x)
            ybound = np.linspace(ymin, ymax, nrod, endpoint=True)
            # sample compatible
            # малы транспонировать кароно? Озьы кулэ!
            bound_R = np.vstack((xbound, ybound)).T
            boundaries.append(Ingot(bound_R))
            
        
        return boundaries    
            
        



class FourBranch2D:
    """
    Four branch system
    """
    def __init__(self, k1=3, k2=7):
        self.k1 = k1
        self.k2 = k2
        
    # sign
    def __repr__(self):
        return 'FourBranch2D(k1=%s, k2=%s)' % (self.k1, self.k2)
        
    def __call__(self, input_sample):
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample)

        k1, k2 = self.k1, self.k2
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 2)
        x1, x2 = sample[:,0], sample[:,1]
        g1 = k1 + 0.1*(x1 - x2)**2 - (x1 + x2)/np.sqrt(2)
        g2 = k1 + 0.1*(x1 - x2)**2 + (x1 + x2)/np.sqrt(2)
        g3 = (x1 - x2) + k2/np.sqrt(2)
        g4 = (x2 - x1) + k2/np.sqrt(2) #č byl tu překlep v jednom članku
        g = np.min((g1, g2, g3, g4), axis=0)
        return SampleBox(input_sample, g, repr(self))
        
    # Fence off!
    def get_2D_R_boundary(self, nrod=100, *args, **kwargs):
        """
        Fence off!
        nrod - number of rods in fencing
        """
        
        k1, k2 = self.k1, self.k2
        sqrt2 = np.sqrt(2)
        
        m = k1/sqrt2 + k2**2/20/sqrt2
        x1_1 = -m - k2/2/sqrt2
        x1_2 = m - k2/2/sqrt2
        
        
        #č nrod je na každou větev
        xbound_1 = np.linspace(x1_1, x1_2, nrod, endpoint=False)
        ybound_1 = xbound_1 + k2/sqrt2
        
        
        #č naša milovaná parabolka v pootočených souřadnicích
        xbound_2_ = np.linspace(-k2/2, k2/2, nrod, endpoint=False)
        ybound_2_ = xbound_2_**2/5 + k1
        
        xbound_2 = (xbound_2_ + ybound_2_) / sqrt2
        ybound_2 = (-xbound_2_ + ybound_2_) / sqrt2
        
        xbound = np.hstack((xbound_1, xbound_2, -xbound_1, -xbound_2))
        ybound = np.hstack((ybound_1, ybound_2, -ybound_1, -ybound_2))
        
        
        # sample compatible
        # малы транспонировать кароно? Озьы кулэ!
        bound_R = np.array((xbound, ybound)).T
        # tuple of samples
        return (Ingot(bound_R),) 



class PassiveVehicleSuspension:
    """
    """
    def __init__(self, V=10, A=0.15915, b_0=0.27, m=0.8158, M=3.2633, g=981):
        #self.constants = [V, A/2/np.pi, b_0, m, M, g]
        self.constants = [V, A, b_0, m, M, g]
        
    # sign
    def __repr__(self):
        return 'PassiveVehicleSuspension(%s, %s, %s, %s, %s, %s)' % (*self.constants,)
        
    def __call__(self, input_sample):
        V, A, b_0, m, M, g = self.constants
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, 3)
        c, c_k, k = sample[:,0], sample[:,1], sample[:,2]
        K1 = (np.pi * m * V * A) / (b_0 * k * g**2)
        C1 = c_k / (m + M)
        C2 = c / M
        C3 = c**2 / (m * M)
        C4 = c_k * k**2 /(m * M**2)
        G1 = 1 - K1 * ((C1-C2)**2 + C3 + C4)
        #G2 = 1 - 7.6394 / (4000 * (M*g)**(-1.5) * c - 1)
        G2 = 4000 * (M*g)**(-1.5) * c - 8.6394 
        #G3 = 1 - 0.5 / np.sqrt(M * g)  / np.sqrt(k**2 * c_k / c / (M + m) + c)
        G3 = 2* np.sqrt(M * g)  * np.sqrt(k**2 * c_k / c / (M + m) + c) - 1
        G4 = c_k  - (g * (M + m))**0.877 
        print(G1, G2, G3, G4)
        return SampleBox(input_sample, np.min((G1, G2, G3, G4), axis=0), repr(self))



#
# Free functions
#

# signature 
#inspect.currentframe().f_code.co_name
        
        
def piecewise_2D_linear(input_sample):
        selfnvar = 2
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, selfnvar)
        x1, x2 = sample[:,0], sample[:,1]
        g1 = np.where(x1 > 3.5, 4-x1, 0.85-0.1*x1)
        g2 = np.where(x2 > 2, 0.5-0.1*x2, 2.3-x2)
        g = np.min((g1,g2), axis=0)
        return SampleBox(input_sample, g, 'piecewise_2D_linear')

# boundary
piecewise_2D_linear.get_2D_R_boundary = GetQuadrantBoundary2D(center_point=(4,5), quadrant='III')
piecewise_2D_linear.pf_expression = lambda fm, a=4, b=5: (fm.marginals[0].sf(a) + fm.marginals[1].sf(b) - fm.marginals[0].sf(a)*fm.marginals[1].sf(b), 'exact solution')


       
        
def non_chi_squares(input_sample):
        selfnvar = 2
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, selfnvar)
        x1, x2 = sample[:,0], sample[:,1]
        g = 0.1 * (52 - 1.5 * x1**2 - x2**2)
        return SampleBox(input_sample, g, 'non_chi_squares')


# boundary for non_chi_squares (Breitung with pareto tail)
def non_chi_squares_R_boundary(nrod=210, *args):
     
        boundaries = []
        y = np.linspace(-np.sqrt(52), np.sqrt(52), nrod, endpoint=True)
        x = + np.sqrt(2*(52-y**2)/3)
        bound_R_1 = np.vstack(( x, y)).T
        bound_R_2 = np.vstack((-x, y)).T
        boundaries.append(Ingot(bound_R_1))
        boundaries.append(Ingot(bound_R_2))
        return boundaries    

non_chi_squares.get_2D_R_boundary = non_chi_squares_R_boundary







def branin_2D(input_sample):
        """
        Rescaled Branin function
        """
        selfnvar = 2
        # očekávam, že get_R_coordinates mně vrátí 2D pole
        sample = get_R_coordinates(input_sample, selfnvar)
        x1, x2 = sample[:,0], sample[:,1]
        g = 80 - ((15*x2 - 5/(4*np.pi**2)*(15*x1-5)**2 + 5/np.pi*(15*x1-5)-6)**2 + 10*(1-1/8/np.pi)*np.cos(15*x1-5) + 10)
        return SampleBox(input_sample, g, 'branin_2D')



def neverfall(input_sample):
    g = np.full(len(input_sample), 1, dtype=np.int8)
    return SampleBox(input_sample, g, 'neverfall')




Mode Type Size Ref File
100644 blob 28117 0907e38499eeca10471c7d104d4b4db30b8b7084 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 72 458b7e2ca46acd9ec0d2caf3cc4d72e515bb73dc __main__.py
100644 blob 73368 3d245b8568158ac63c80fa0847631776a140db0f blackbox.py
100644 blob 11243 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d candybox.py
100644 blob 29927 066a2d10ea1d21daa6feb79fa067e87941299ec4 convex_hull.py
100644 blob 101505 750fd8843bcd4bb2cb4e13fc4de9b92fcf16f409 dicebox.py
100644 blob 36886 d27b8a79485ea48402937e44102a2c44fcef4dc5 estimation.py
100644 blob 34394 3f0ab9294a9352a071de18553aa687c2a9e6917a f_models.py
100644 blob 35721 3daee87ec0bc670207356490e16f200fed0d4fc4 g_models.py
100644 blob 21043 ca09c8a3fdcda14efa46d4a98fc55855773dcbca ghull.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 29393 96162a5d181b8307507ba2f44bafe984aa939163 lukiskon.py
100644 blob 3164 8aac057ad91bea3300c87b1ae30e717aab7e6002 misc.py
040000 tree - ea76ee9256f0f148427487c733a2dc4c00c9fc1a mplot
100644 blob 1462 437b0d372b6544c74fea0d2c480bb9fd218e1854 plot.py
100644 blob 2807 1feb1d43e90e027f35bbd0a6730ab18501cef63a plotly_plot.py
040000 tree - 195fa1f8abb1e3ea0913a85b10e7c51613b705ea qt_gui
100644 blob 8566 5c8f8cc2a34798a0f25cb9bf50b5da8e86becf64 reader.py
100644 blob 4284 a0e0b4e593204ff6254f23a67652804db07800a6 samplebox.py
100644 blob 6558 df0e88ea13c95cd1463a8ba1391e27766b95c3a5 sball.py
100644 blob 6739 0b6f1878277910356c460674c04d35abd80acf13 schemes.py
100644 blob 76 11b2fde4aa744a1bc9fa1b419bdfd29a25c4d3e8 shapeshare.py
100644 blob 54884 fbe116dab4fc19bb7568102de21f53f15a8fc6bf simplex.py
100644 blob 13090 2b9681eed730ecfadc6c61b234d2fb19db95d87d spring.py
100644 blob 10953 da8a8aaa8cac328ec0d1320e83cb802b562864e2 stm_df.py
040000 tree - 4cad9136391e4dd71294c2b0486ab93c31317313 testcases
100644 blob 2465 d829bff1dd721bdb8bbbed9a53db73efac471dac welford.py
100644 blob 25318 fcdabd880bf7199783cdb9c0c0ec88c9813a5b18 whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main