iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/whitebox.py (4a6014ca5255aa96059ff9ed5a7e29df98d26ffc) (22048 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8

"""
Zde leží whiteboxy
Zatimco BlackBox pěčlivě ukladá věškerá data,
věškeré sady vzorků, průběžné odhady a tak,
WhiteBox musí obsahovat jen pf_exact, které buď už předem zná,
nebo jej spočítá a není vůbec/nachren nutný cokoliv ukladat.

en:
f_model + g_model = pf
WhiteBox = [f_model, g_model, pf_exact]
pf_exact is most important part of WhiteBox 
Knowledge of pf is the only reason to create WhiteBox

whitebox actually IS g_model PLUS:
.f f_model
.pf_exact
.pf_exact_method
"""
import numpy as np
from scipy import stats
from scipy import special # for S_ball
from scipy import integrate # for S_ball

from .samplebox import SampleBox

from . import f_models
import copy
from . import g_models

from . import plot


class WhiteBox:
    """
    Bazová třida pro dědictví
    
    úkolem whiteboxu je spočítat pf-ko
    .pf_exact
    .pf_exact_method
    """
    pf_exact_method = 'None'
    
    def __init__(wt,  f_model, g_model):
        wt.gm = g_model
        wt.f = f_model
        # na začatku nemáme vzorky - pouze rozdělení a podpís
        wt.sample_box = SampleBox(wt.f(), gm_signature=wt.gm_signature)
        
        try: # no to jsme líný. Možná samotný g_model tuší jak se spočte pf-ko?
            wt.pf_exact, wt.pf_exact_method = g_model.pf_expression(f_model)
        except AttributeError:
            pass
        
    def __str__(wt):
        #ёč хощется přidat nějaký popísek k testkejsům
        #č chce se odlišovat úlohy, co už získaly slavu 
        #č v časopísech od těch, co ještě nie,
        #č od těch, se kterými ještě hrajeme
        #č od těch, co jsme před chvilkou vymysleli
        if 'description' in wt.__dict__:
            return  wt.description
        else:
            return  wt.__class__.__name__ + ' of' + str(wt.gm)
        
    def __repr__(wt):
        return  'WhiteBox(%s, %s)' %(repr(wt.f), repr(wt.gm))
        
    def __len__(wt):
        return len(wt.sample_box)
        
        
    def __call__(wt, sample=None):
        if sample is None:
            sample = wt.sample_box()
        
        # zamykame se do sebe
        result = wt.gm(sample)
        wt.sample_box.add_sample(result)
        return result
    
        
    def __getitem__(self, slice):
        self_copy = copy.copy(self)
        self_copy.sample_box = self.sample_box[slice]
        return self_copy
        
    def __getattr__(wt, attr):
        if attr == 'whitebox':
            return wt
        # co patři g_modelovi?
        elif attr == 'get_2D_R_boundary':
            return wt.gm.get_2D_R_boundary
        elif attr == 'gm_signature':
            try: # byla volná funkce?
                return wt.gm.__name__
                # asi to byla trida?
            except AttributeError:
                return repr(wt.gm)
        
        
        # co mělo být definováno ve WhiteBoxu? Ale teda není?
        elif attr == 'pf_exact_method':
            raise AttributeError
            
          # пытка-непытка
        elif attr == 'pf_exact': 
            if 'beta_exact' in wt.__dict__:
                return stats.norm.cdf(-wt.beta_exact)
            else:
                # мы нищего не знаем
                raise AttributeError("Nothing known about failure probability")
                
        elif attr == 'beta_exact':
            if 'pf_exact' in wt.__dict__:
                return -stats.norm.ppf(wt.pf_exact)
            else:
                raise AttributeError("Nothing known about failure probability")
        
        
        # branime sa rekurzii
        # defend against recursion
        elif attr == 'sample_box':
            raise AttributeError
            
        # zbytek teda nievím
        else:
            return getattr(wt.sample_box, attr)
    
    # just plot, green points, red points...
    plot2D = plot.plot2D
    plot3D = plot.plot3D
    show2D = plot.show2D
    show3D = plot.show3D
            
        
    def get_2D_boundary(wt, nrod=100, viewport_sample=None, viewport_space='R'):
        """
        Fence off!
        nrod - number of rods in fencing
        viewport_sample - limit points of viewport
        (function will get xlim and ylim from there, 
        assuming there will be at least two points)
        """
        
        if (viewport_sample is not None): # and viewport_sample.nsim: #>0
            if viewport_space=='R':
                viewport_sample_R = viewport_sample
            else:
                viewport_sample_R = wt.f_model.new_sample(viewport_sample, viewport_space, extend=True).R
        else:
            viewport_sample_R = wt.f_model.new_sample([[-7,-7],[7,7]], 'G', extend=True).R
            
            # should I tolerate nD?
        viewport_sample_R = np.vstack((viewport_sample_R[:,:2], wt.sample_box.R[:,:2]))
        xmin = np.ma.masked_invalid(viewport_sample_R[:,0]).min()
        xmax = np.ma.masked_invalid(viewport_sample_R[:,0]).max()
        ymin = np.ma.masked_invalid(viewport_sample_R[:,1]).min()
        ymax = np.ma.masked_invalid(viewport_sample_R[:,1]).max()
        
        # získám seznam polí
        bounds_R = wt.get_2D_R_boundary(nrod, (xmin, xmax), (ymin, ymax))
        # transformuji na seznam vzorků
        return [wt.f_model.new_sample(bounds_R[i], extend=True)  for i in range(len(bounds_R))]
        
        


    # Monte Carlo, n-krátá realizace
    def MC(wt, Nsim=int(1e6)):
        
        
        # tohlensto může bejt dost těžkým
        result = wt.gm(wt.f(Nsim))
        # should I stay or should I go?
        wt.sample_box.add_sample(result)
        
        # je tu jakoby že g_model vždy vrací nějakej sample_box
        pf_exact = np.count_nonzero(result.failsi)/Nsim
        
        # šlo by to?
        if wt.pf_exact_method == 'None' or wt.pf_exact_method == 'MC' and wt.Nsim <= Nsim:
            wt.pf_exact = pf_exact
            wt.Nsim = Nsim
            wt.pf_exact_method = 'MC'
        
        print('Monte Carlo estimation of pf is %s (%s simulations)'%(pf_exact, Nsim))
        return result
        


    # IS, (n-2)-krátá realizace, n>2
    def IS(wt, Nsim=int(1e4), h_model=None, IS_mode='G'):
        """
        IS_mode - v jakých souřadnicích robím merge a jaká PDF použiváme?
        může být 'R' nebo 'G'
        jinde # čo jinde?
        """
        
        if h_model is not None:
            wt.h = h_model 
            wt.IS_mode = IS_mode
        elif 'h' not in wt.__dict__:
            wt.h = f_models.UnCorD([stats.norm(0,2.5) for i in range(wt.f.nvar)])
            wt.IS_mode = 'G'
            
            
        #
        # jdeme na to, koťě!
        #
        
        # zgenerujeme vzorky
        # nic zajimavýho
        wt.h = wt.h(Nsim)
        
        # a teď bacha!
        if wt.IS_mode == 'R':
            # jestli máme to právé vzorkovácí rozdělení - tak nemáme čo robiť
            to_sample = wt.f.new_sample(wt.h) # smerdží se to po R
            # w like weights
            wt.w = to_sample.pdf_R / wt.h.pdf_R
        elif wt.IS_mode == 'G':
            # tady musíme provést jeden trik
            to_sample = wt.f.new_sample(wt.h.R, 'G') # R-ko smerdžíme ako G-čko
            wt.w = to_sample.pdf_G / wt.h.pdf_R # snad je to správně
        else:
            # шо-то тут не то...
            # čo blbnéš, kámo?
            # What's going on with my IS_mode?
            raise ValueError("IS_mode should be either 'R' or 'G'")
        
        # vahy máme, jedeme dál
        # sample_box jíž není prázdnej
        result = wt.gm(to_sample)
        wt.sample_box.add_sample(result)
        
        # hodilo by sa to?
        pf_exact = np.sum(wt.w[result.failsi])/Nsim
        
        if wt.pf_exact_method in ('None', 'IS_norm', 'IS'):
            wt.Nsim = Nsim
            if pf_exact < 1:
                wt.pf_exact = pf_exact
                wt.pf_exact_method = 'IS'
            else:
                # ať mně nerobí ostudu
                wt.pf_exact = np.sum(wt.w[result.failsi]) / np.sum(wt.w)
                wt.pf_exact_method = 'IS_norm'
        
        print('Importance Sampling pure estimation of pf is %s (%s simulations)'%(pf_exact, Nsim))
        return result
       


class HyperPlane(WhiteBox): # куда ж без него...
    def __init__(self, betas=(1,2,3)):
        """
        Class takes for inicialization tuple of betas 
        Betas are coeffitients in sense of Regression Analysis (well, not really)
        g= a*X1 + b*X2 + c
        betas=(a,b,c)
        """
        self._betas = betas
        self.gm = g_models.Linear_nD(betas)
        self.f = f_models.SNorm(len(betas)-1)
        # na začatku nemáme vzorky - pouze rozdělení a podpís
        self.sample_box = SampleBox(self.f(), gm_signature=self.gm_signature)
        
        # tady už je to ta, "náše" beta )
        # beta = c/np.sqrt(a**2 + b**2)
        self.beta_exact = betas[-1]/np.sqrt(np.sum(np.array(betas[:-1])**2)) 
        self.pf_exact = stats.norm.cdf(-self.beta_exact)
        self.pf_exact_method = 'FORM (exact solution)' # Ang, Tang and Pythagoras
        
        
    def __str__(wt):
        return  'HyperPlaneBox%sD'%(len(wt._betas)-1)
        
    def __repr__(wt):
        return  'HyperPlane(%s)' % repr(wt._betas)



class Weibull_Z_min(WhiteBox):
    def __init__(self, wb_scales=(1.,1.), shape=5, **kwargs):
        """
        parametry pravdepodobnostniho rozdeleni pro Z_min s Weib. velicinami
        wb_scales=(1,1) - tuple of Weibull scale parameters, len(wb_scales)==nvar
        shape = 5 
        je třeba zadat buď pf_exact, nebo konštantu u funkce minima Z_min
        """
        self.wb_scales = wb_scales
        self.shape = 5
        self.f = f_models.UnCorD([stats.weibull_min(shape, scale=sc_i) for sc_i in wb_scales])
        
        # scale parametr minima z nvar Weibullovskych
        # tohle by platilo pro stejná rozdělení
        #sn = scale * nvar ** (-1.0 / shape)
        # pro nás musí to být něco takovýho
        sn = np.sum(np.power(wb_scales, -shape)) ** (-1.0 / shape)
        self.rvweibmin = stats.weibull_min(shape, scale=sn)
        
        # je třeba zadat buď pf_exact, nebo konštantu u funkce minima Z_min
        self.pf_exact_method = 'exact solution'
        if 'pf_exact' in kwargs:
            self.pf_exact = kwargs['pf_exact']
            self.const = -self.rvweibmin.ppf(self.pf_exact)
        elif 'beta_exact' in kwargs:
            self.beta_exact = kwargs['beta_exact']
            self.const = -self.rvweibmin.ppf(self.pf_exact)
        elif 'const' in kwargs:
            self.const = kwargs['const']
            self.pf_exact = self.rvweibmin.cdf(-self.const) # asi
        else:
            # no to teda uživatele пошли
            self.pf_exact = 1e-4
            self.const = -self.rvweibmin.ppf(self.pf_exact)
        
        self.gm = g_models.Z_min(self.const)
        # na začatku nemáme vzorky - pouze rozdělení a podpís
        self.sample_box = SampleBox(self.f(), gm_signature=self.gm_signature)

    def __str__(self):
        return  'Weibull_Z_min%sD'%(len(self.wb_scales))
        
    def __repr__(self):
        return  'Weibull_Z_min(%s, %s, pf_exact=%s)' % (repr(self.wb_scales), repr(self.shape), repr(self.pf_exact))




# já teda tridu zababachnu, ale že to teoreticky platí jsem neodvozoval
# UPD: testy neprochází, logicky hodnoty nesedí
# vůbec netuším jak by se to mohlo odvozovat 
class Gaussian_Z_sumexp(WhiteBox):
    def __init__(self, nvar=2, **kwargs):
        """
        je třeba zadat buď pf_exact, nebo konštantu u funkce Z_sumexp
        """
        
        # je tam předpoklad SNormu?
        self.f = f_models.SNorm(nvar)
        
        self.C1 = np.sqrt(np.sqrt(5) / 3. - 1. / 3.)
        self.C2 = np.sqrt(3.) / 3.
        # je třeba zadat buď pf_exact, nebo konštantu u funkce Z_sumexp
        self.pf_exact_method = 'tešt solution'
        if 'pf_exact' in kwargs:
            self.pf_exact = kwargs['pf_exact']
            self.C = self.beta_exact * self.C1 * np.sqrt(nvar) - self.C2 * nvar
        elif 'beta_exact' in kwargs:
            self.beta_exact = kwargs['beta_exact']
            self.C = self.beta_exact * self.C1 * np.sqrt(nvar) - self.C2 * nvar
        elif 'const' in kwargs:
            self.const = kwargs['const']
            self.C = self.const
            self.beta_exact = (self.C + self.C2 * nvar) / self.C1 / np.sqrt(nvar)
        elif 'C' in kwargs:
            self.C = kwargs['C']
            self.beta_exact = (self.C + self.C2 * nvar) / self.C1 / np.sqrt(nvar)
        else:
            # no to teda uživatele пошли
            self.pf_exact = 1e-4
            self.C = self.beta_exact * self.C1 * np.sqrt(nvar) - self.C2 * nvar
        
        
        self.const = self.C
        self.gm = g_models.Z_sumexp(self.const)
        # na začatku nemáme vzorky - pouze rozdělení a podpís
        self.sample_box = SampleBox(self.f(), gm_signature=self.gm_signature)
     
    def __str__(self):
        return  'Gaussian_Z_sumexp%sD'%(self.nvar)
        
    def __repr__(self):
        return  'Gaussian_Z_sumexp(%s, pf_exact=%s)' % (repr(self.nvar), repr(self.pf_exact))   



class SNorm_Z_sumsq(WhiteBox):
    def __init__(self, nvar=2, **kwargs):
        """
        je třeba zadat buď pf_exact, nebo konštantu u funkce Z_sumsq
        """
        
        # je tu předpoklad SNormu, to vím
        self.f = f_models.SNorm(nvar)
        
        self.rvchisq = stats.chi2(nvar)
        
        # je třeba zadat buď pf_exact, nebo konštantu u funkce Z_sumsq
        self.pf_exact_method = 'exact solution'
        if 'pf_exact' in kwargs:
            self.pf_exact = kwargs['pf_exact']
            self.C = self.rvchisq.ppf(self.pf_exact)
        elif 'beta_exact' in kwargs:
            self.beta_exact = kwargs['beta_exact']
            self.C = self.rvchisq.ppf(self.pf_exact)
        elif 'const' in kwargs:
            self.const = kwargs['const']
            self.C = self.const
            self.pf_exact = self.rvchisq.cdf(self.C)
        elif 'C' in kwargs:
            self.C = kwargs['C']
            self.pf_exact = self.rvchisq.cdf(self.C)
        else:
            # no to teda uživatele пошли
            self.pf_exact = 1e-4
            self.C = self.rvchisq.ppf(self.pf_exact)
        
        
        self.const = self.C
        self.gm = g_models.Z_sumsq(self.C)
        # na začatku nemáme vzorky - pouze rozdělení a podpís
        self.sample_box = SampleBox(self.f(), gm_signature=self.gm_signature)
     
    def __str__(self):
        return  'SNorm_Z_sumsq%sD'%(self.nvar)
        
    def __repr__(self):
        return  'SNorm_Z_sumsq(%s, pf_exact=%s)' % (repr(self.nvar), repr(self.pf_exact))   






class SNorm_S_ball(WhiteBox):
    #r = 5.256521 # pf 1.00000404635e-06
    def __init__(self, nvar=2, r=5.256521):
        
        
        # SNorm
        self.f = f_models.SNorm(nvar)
        
        
        #
        #   pf, jen tak, hračka
        #
        self.pf_exact_method = 'precise solution'
        if nvar == 1:
            #self.pf_exact = 1 - 2**(1-nvar/2) / special.gamma(nvar/2)    *    (np.sqrt(np.pi)*special.erf(r/np.sqrt(2)))/np.sqrt(2)
            self.pf_exact = 1 - special.erf(r/1.4142135623730951)
        elif nvar == 2:
            self.pf_exact = np.exp(-r**2/2)
        elif nvar == 3:
            #self.pf_exact = 1 - 2**(1-nvar/2) / special.gamma(nvar/2)    *    (np.exp(-r**2/2)*(np.sqrt(np.pi)*np.exp(r**2/2)*special.erf(r/np.sqrt(2))-np.sqrt(2)*r))/np.sqrt(2)
            self.pf_exact = 1 - 0.5641895835477564 * (np.exp(-r**2/2)*(np.sqrt(np.pi)*np.exp(r**2/2)*special.erf(r/np.sqrt(2))-np.sqrt(2)*r))
        elif nvar == 4:
            self.pf_exact = (r**2/2+1)*np.exp(-r**2/2)
        elif nvar == 6:
            self.pf_exact = (r**4+4*r**2+8)*np.exp(-r**2/2)/8
            
            # nvar=8:  (48-(r^6+6*r^4+24*r^2+48)*e^(-r^2/2)  / 2**(nvar/2))/48
            
            # hračička ve hračce
            # nemám žádnou jistotu, že tohle počítá přesněji
        elif nvar % 2 == 0: # sudé
            poly = [1]
            for i in range(nvar-2, 0, -2):
                poly.append(0)
                poly.append(i*poly[-2])
            self.pf_exact = np.polyval(np.array(poly) / poly[-1], r) * np.exp(-r**2/2) 
            
        else:
            self.pf_exact = 1 - 2**(1-nvar/2) / special.gamma(nvar/2)    *    integrate.quad(lambda x: np.exp(-(x**2)/2)*x**(nvar-1), 0, r)[0] 
        
        
        self.r = r
        self.gm = g_models.S_ball(r)
        # na začatku nemáme vzorky - pouze rozdělení a podpís
        self.sample_box = SampleBox(self.f(), gm_signature=self.gm_signature)
     
    def __str__(self):
        return  'SNorm_S_ball%sD'%(self.nvar)
        
    def __repr__(self):
        return  'SNorm_S_ball(nvar=%s, r=%s)' % (repr(self.nvar), repr(self.r))   


#
#corner_values = np.full(2**nvar, 1, np.int8) # -1 means inertní, 0 failure, 1 success.
#alpha = [1, 1]
#
#if fce_por == 'Sin2D':
#    corner_values[0] = 1
#    corner_values[3] = 0
#    pf_exact = 4.1508e-4
#elif fce_por == 'S_ball':
#    corner_values = np.full(2**nvar, 0, np.int8)
#    pf_exact = 1 - 2**(1-nvar/2) / gamma(nvar/2) * integrate.quad(lambda x: np.exp(-(x**2)/2)*x**(nvar-1), 0, r)[0] 
#elif fce_por == 'S_ballSin2D':
#    corner_values = np.full(2**nvar, 0, np.int8)
#    pf_exact = 0 # I don't know, really
#elif fce_por == 'Prod_FourBetas':
#    corner_values = np.full(2**nvar, 0, np.int8) # dont know in any corner
#    beta = 2.0
#    pf_exact = 2*np.sqrt(2)*stats.norm.cdf(-beta) # true only for beta -> infinity!!
#elif fce_por == 'BlackSwan2D':
#    corner_values[0] = 1
#    corner_values[3] = 0
#    #corner_values = np.full(2**nvar, 1, np.int8) # Success in all corners
#    #corner_values[0] = 0 #failure somwehere in top right corner
#    a = 2.0
#    b = 5.0
#    p = stats.norm.cdf(-a)*stats.norm.cdf(-b)
#    # a<b
#    pf_exact = p
#    # a>b
#    # pf_exact = stats.norm.cdf(a) - stats.norm.cdf(b) + p 
#elif fce_por == 'Metaballs2D':
#    corner_values = np.full(2**nvar, 0, np.int8) # dont know in any corner




#def get_quadrant_probability(center_point=(0,0), quadrant='I'):
        """
       sebemenší pomocná funkce pri hranici L tvaru
        quadrants also сэрегъёс-compatible
        #### CORNERS 2D #####
        # print(сэрегъёс)
        # numbering:
        #    2  |  3
        #  -----|-----
        #    0  |  1
        """

#class Quadrant2D(WhiteBox):
#   def __new__(cls, g_model, f_model=f_models.SNorm(2)):
#       """
#       Trik je v tom, že já odhaduji pf na základě hranici poruchy,
#       prohlašenou g_modelem. 
#       g_model MUST have .mins or .maxs setted up!
#       """
#       if f_model.nvar != 2:
#           raise ValueError("Reliability problem is supposed to be 2D")
#           
#       else:
#           wt = super(Quadrant2D, cls).__new__(cls)
#           wt.gm = g_model
#           wt.f = f_model
#           # na začatku nemáme vzorky - pouze rozdělení a podpís
#           wt.sample_box = SampleBox(wt.f(), gm_signature=wt.gm_signature)
#           
#           f1, f2 = f_model.marginals
#           try:
#               (c1, k1), (c2, k2) = g_model.mins
#               if k1 > 0:
#                   a = f1.cdf(-c1/k1)
#               else:
#                   a = f1.sf(-c1/k1)
#               if k2 > 0:
#                   b = f2.cdf(-c2/k2)
#               else:
#                   b = f2.sf(-c2/k2)
#           
#           quadrant = g_model.get_2D_R_boundary.quadrant
#           xc, yc = g_model.get_2D_R_boundary.center_point
#           
#           #quadrants also сэрегъёс-compatible
#           #### CORNERS 2D #####
#           # print(сэрегъёс)
#           # numbering:
#           #    2  |  3
#           #  -----|-----
#           #    0  |  1
#           
#           wt.pf_exact_method = 'exact solution' # under condition of right g_model
#               # mně nic hezčího prostě nenapadá(
#           if self.quadrant in ('I', 3):
#               xbound = np.append(np.full(nrod, xc), np.linspace(xc, xmax, nrod, endpoint=True))
#               ybound = np.append(np.linspace(ymax, yc, nrod, endpoint=True), np.full(nrod, yc))
#           elif self.quadrant in ('II', 2):
#               xbound = np.append(np.linspace(xmin, xc, nrod, endpoint=True), np.full(nrod, xc))
#               ybound = np.append(np.full(nrod, yc), np.linspace(yc, ymax, nrod, endpoint=True))
#           elif self.quadrant in ('III', 0):
#               xbound = np.append(np.linspace(xmin, xc, nrod, endpoint=True), np.full(nrod, xc))
#               ybound = np.append(np.full(nrod, yc), np.linspace(yc, ymin, nrod, endpoint=True))
#           else: # self.quadrant in ('IV', 1):
#               xbound = np.append(np.full(nrod, xc), np.linspace(xc, xmax, nrod, endpoint=True))
#               ybound = np.append(np.linspace(ymin, yc, nrod, endpoint=True), np.full(nrod, yc))
#        
#elif fce_por == 'Logistic2D':
#    a = 4.
#    b = 5.  #one line, second line and subtract the twice calculated intersection
#    pf_exact = lambda a=4, b=5: stats.norm.cdf(-a) + stats.norm.cdf(-b) - stats.norm.cdf(-a)*stats.norm.cdf(-b) 
       



# no pf information - no reason to create such wbox

#class UniformBranin2D(WhiteBox):
#    def __init__(self):
#        
#        # Uniform-uniform
#        self.f = f_models.UnCorD((stats.uniform, stats.uniform))
#       
#        self.gm = g_models.branin_2D
#        # na začatku nemáme vzorky - pouze rozdělení a podpís
#        self.sample_box = SampleBox(self.f, gm_signature=self.gm_signature)
#     
#    def __str__(self):
#        return  'UniformBranin2D'
#        
#    def __repr__(self):
#        return  'UniformBranin2D()'




Mode Type Size Ref File
100644 blob 28117 0907e38499eeca10471c7d104d4b4db30b8b7084 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 73368 3d245b8568158ac63c80fa0847631776a140db0f blackbox.py
100644 blob 11243 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d candybox.py
100644 blob 26958 5acc5a7b512691d13a511deee135fd90c86e55c8 convex_hull.py
100644 blob 84851 811ef4d818e55cbe2d0305da62fcc2e1cada359a dicebox.py
100644 blob 36930 a775d1114bc205bbd1da0a10879297283cca0d4c estimation.py
100644 blob 34394 3f0ab9294a9352a071de18553aa687c2a9e6917a f_models.py
100644 blob 31540 a577087003a885ca7499d1ee9451e703fa9d2d36 g_models.py
100644 blob 20552 d121d3a9f8fe544aaaf22f7524355e480b1e767f ghull.py
100644 blob 42820 1092b3b9f05b11d0c53b3aa63df2460ec355085d gl_plot.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 29393 96162a5d181b8307507ba2f44bafe984aa939163 lukiskon.py
100644 blob 2004 6ea8dc8f50a656c48f786d5a00bd6398276c9741 misc.py
040000 tree - 0e9b1f6d2b2c5a92806b461940f0d2d4333bdc6c mplot
100644 blob 1450 4849f178b588e252b8c7f6a940d2d82ad35f6914 plot.py
100644 blob 2807 1feb1d43e90e027f35bbd0a6730ab18501cef63a plotly_plot.py
100644 blob 143853 ef70c013dbcb917af28451fac91dacba877aa029 qt_plot.py
100644 blob 8206 5981023118262109fca8309d9b313b521a25f88f reader.py
100644 blob 4284 a0e0b4e593204ff6254f23a67652804db07800a6 samplebox.py
100644 blob 6558 df0e88ea13c95cd1463a8ba1391e27766b95c3a5 sball.py
100644 blob 5553 bac994ae58f1df80c7f8b3f33955af5402f5a4f3 sball_old.py
100644 blob 2605 0034d2e3f14c056541888235e59127e8f28b131d schemes.py
100644 blob 21623 281aef80556b8d22842b8659f6f0b7dab0ad71af shapeshare.py
100644 blob 48537 10f90c5614e9a04f0cd9f78e75f0db4a6becb3e4 simplex.py
100644 blob 13090 2b9681eed730ecfadc6c61b234d2fb19db95d87d spring.py
100644 blob 10940 6965eabdb5599bb22773e7fef1178f9b2bb51efe stm_df.py
100644 blob 3433 3063a1b6a132cbb5440ab95f1b6af1f1ff4266ac testcases_2D.py
100644 blob 2465 d829bff1dd721bdb8bbbed9a53db73efac471dac welford.py
100644 blob 22048 4a6014ca5255aa96059ff9ed5a7e29df98d26ffc whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main