iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/f_models.py (374874f5b3a786880e452f819c4e934437c68562) (13752 bytes) (mode 100644) (type blob)

#!/usr/bin/env python
# coding: utf-8


"""
 cs: 
 

 en: 

"""

import numpy as np
from scipy import stats
import copy


class Ingot:
    """
    Prazdná třida pro "nevypalené" vzorky, tj. bez přiřazeného rozdělení
    """
    def __init__(self, data, attr='R'):
        # data? takový neslaný nazev...
        # data suppose to be pandas compatible, i.e. 
        # nsim, nvar = data.shape
        self.attr = attr
        try:
            self.data = np.atleast_2d(getattr(data, attr))
        except AttributeError:
            self.data = np.atleast_2d(data)
        
        
    def __repr__(self):
        return "%s(np.%s, '%s')"%('Ingot', repr(self.data), self.attr)
        
    def __str__(self):
        return str(self.data)
        
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, slice):
        self_copy = copy.copy(self)
        # robim kopiu z _data, nebo ne?
        self_copy.data = np.atleast_2d(self.data[slice,:]) #.copy()
        return self_copy
        
        
    def __getattr__(self, attr):
        # Рекурсилы пезьдэт!
        if attr in ('attr', 'data'):
            raise AttributeError(attr)
        #if attr in ('R', 'Rn', 'GK', 'G', 'P', 'U') and attr==self.space:
        #    return f._data
        elif attr == 'nvar':
            nsim, nvar = self.data.shape
            return nvar
        elif attr == 'nsim':
            return len(self.data)
            
        # гулять так гулять
        elif attr == self.attr:
            return self.data
            
        raise AttributeError(attr)
      
        
        # vstupné vzorky jsou implicitně R, 
        # nikoliv z prostoru tohoto krámu
    def add_sample(self, sample, space='R'):
        # first of all, are you one of us?
        if space == self.attr:
            # does sample is another sample object? 
            # zde nechcu, aby spadlo
            try:
                self.data = np.vstack((self.data, getattr(sample, self.attr)))
            except AttributeError:
                self.data = np.vstack((self.data, sample))
            
        # no, actually
        else:
            # does sample is another sample object? 
            # self.data = np.vstack((self.data, getattr(sample, self.attr)))
            # ale zde chcu 
            # (aby spadlo)
            raise ValueError
            
        
    # drobná pomucka
    def new_sample(f, sample=None, space='R'):  
        return Ingot(sample, space) # too easy


class SNorm:
    """
    Standard Gauss distribution
    """
    def __init__(self, nvar):
        self.__nvar = nvar
        # nvar_R + nvar_U + pdf_R
        rowsize = nvar*2 + 1
        # data? takový neslaný nazev...
        # data suppose to be cKDTree compatible, i.e. 
        # nsim, nvar = data.shape
        self._data = np.empty((0, rowsize), dtype=float)
    
    def __repr__(self):
        return "%s(%s)"%('SNorm', self.__nvar)
        
    def __str__(f):
        return str(f.R)
        
    def __call__(f, ns=0):
        f_copy = eval(f.__repr__())
        if ns:
            sample_P = np.random.random((ns, f_copy.nvar))
            sample_R = stats.norm.ppf(sample_P)
                
            pdfs_R = stats.norm.pdf(sample_R)
            pdf_R = np.prod(pdfs_R, axis=1).reshape(-1, 1)
            f_copy._data = np.hstack((sample_R, sample_P, pdf_R))
        return f_copy
        
    def __len__(f):
        return len(f._data)
    
    def __getitem__(f, slice):
        f_copy = eval(f.__repr__())
        # robim kopiu z _data, nebo ne?
        f_copy._data = np.atleast_2d(f._data[slice,:]) #.copy()
        return f_copy
        
        
        # slajsy. Nejsem jist, zda mám robit kopiu, nebo ne. Takže bacha!
    def __getattr__(f, attr):
        if attr in ('pdf_R', 'pdf_Rn', 'pdf_GK', 'pdf_G'):
            return f._data[:,-1]
        elif attr in ('R', 'Rn', 'GK', 'G'):
            return f._data[:,:f.__nvar]
        elif attr in ('P', 'U'):
            return f._data[:,f.__nvar:2*f.__nvar]
        elif attr == 'nvar':
            return f.__nvar
        elif attr == 'nsim':
            return len(f._data)
        elif attr == 'marginals':
            return [stats.norm for __ in range(f.__nvar)]
        elif attr == 'cor':
            return np.diag([1 for __ in range(f.__nvar)])
            
        raise AttributeError(attr)
        
        
       # pro určitou konzistenci. Ne že bych chtěl zamykat dveře v Pythonu
    def __setattr__(f, attr, value):
        if attr in ('_SNorm__nvar','_data'):
            f.__dict__[attr] = value
        else:
            #raise AttributeError('Čo tu robíš?')
            #raise AttributeError('Враг не пройдёт!')
            #raise AttributeError('Иди отсюда!')
            #raise AttributeError('Аслыкъёсы воштыны уг луи!')
            raise AttributeError('Atribute %s of %s object is not writable' % (attr, f.__class__.__name__))
        
        
    def add_sample(f, sample, space='R'):
        # does sample is exactly me?
        if f.__repr__() == sample.__repr__():
            newdata = sample._data
        elif space in ('R', 'Rn', 'GK', 'G'):
            # does sample is another f_model object? 
            try:
                sample_R = getattr(sample, space)
            except:
                # no
                sample_R = sample
            sample_P = stats.norm.cdf(sample_R)
            
            pdfs_R = stats.norm.pdf(sample_R)
            pdf_R = np.prod(pdfs_R, axis=pdfs_R.ndim-1)
            if pdfs_R.ndim == 2:
                newdata = np.hstack((sample_R, sample_P, pdf_R.reshape(len(pdf_R), 1)))
            else:
                newdata = np.hstack((sample_R, sample_P, pdf_R))
            
        elif space in ('P', 'U'):
            try:
                sample_P = getattr(sample, space)
            except:
                sample_P = sample
            sample_R = stats.norm.ppf(sample_P)
                
            pdfs_R = stats.norm.pdf(sample_R)
            pdf_R = np.prod(pdfs_R, axis=pdfs_R.ndim-1)
            if pdfs_R.ndim == 2:
                newdata = np.hstack((sample_R, sample_P, pdf_R.reshape(len(pdf_R), 1)))
            else:
                newdata = np.hstack((sample_R, sample_P, pdf_R))
            
        f._data = np.vstack((f._data, newdata))
            
        
    # drobná pomucka
    def new_sample(f, sample=None, space='R'):  
        f_copy = eval(f.__repr__())
        if sample is not None:
            f_copy.add_sample(sample, space)
        return f_copy
    
#    # drobná pomucka
#    def new_random_sample(f, ns=1):  
#        f_copy = eval(f.__repr__())
#        f_copy.add_sample(np.random.random((ns, f.nvar)), 'U')
#        return f_copy
    
    




class UnCorD: # nic moc nazev, ale je přece lepší nez CommonJointDistribution
    """
    Takes tuple of scipy stats distribution objects
    """
    def __init__(self, marginals):
        self.__marginals = marginals
        # nvar_Rn + nvar_R + nvar_P + nvar_G + pdf_R + pdf_G
        rowsize = len(marginals)*4 + 2
        # data? takový neslaný nazev...
        # data suppose to be cKDTree compatible, i.e. 
        # nsim, nvar** = data.shape
        self._data = np.empty((0, rowsize), dtype=float)
        
    def __repr__(self):
        return "%s(%s)"%('UnCorD', repr(self.__marginals))
        
    def __str__(f):
        return str(f.R)
    
    def __call__(f, ns=0):  
        f_copy = copy.copy(f) # nebo deep?
        f_copy._data = np.empty((0, f_copy._data.shape[1]), dtype=float)
        
        if ns:
            sample_dict = {'P':np.random.random((ns, f_copy.nvar))}
            f._chain(sample_dict)
            pdf_G = np.prod(stats.norm.pdf(sample_dict['G']), axis=1).reshape(-1, 1)
            pdfs_R = [f.marginals[i].pdf(sample_dict['R'][:, i]) for i in range(f.nvar)]
            # je tu fakt axis=0. Dochazí totíž v iterátoru k převracení
            pdf_R = np.prod(pdfs_R, axis=0).reshape(-1, 1)
            # nvar_Rn + nvar_R + nvar_P + nvar_G + pdf_R + pdf_G
            f_copy._data = np.hstack((sample_dict['Rn'], sample_dict['R'], sample_dict['P'], sample_dict['G'], pdf_R, pdf_G))
        return f_copy
    
    def __len__(f):
        return len(f._data)
    
    def __getitem__(f, slice):
        f_copy = copy.copy(f) # nebo deep?
        f_copy._data = np.atleast_2d(f._data[slice,:]) #.copy()
        return f_copy
        
        # dúfám, že tyhle slajsy sa vyplatí
    def __getattr__(f, attr):
        if attr == 'pdf_R':
            return f._data[:,-2]
        elif attr in ('pdf_GK', 'pdf_G'):
            return f._data[:,-1]
        elif attr == 'Rn':
            return f.__frame(0)
        elif attr == 'R':
            return f.__frame(1)
        elif attr in ('P', 'U'):
            return f.__frame(2)
        elif attr in ('GK', 'G'):
            return f.__frame(3)
            
        elif attr == 'nvar':
            return len(f.__marginals)
        elif attr == 'nsim':
            return len(f._data)
        elif attr == 'marginals':
            return f.__marginals
        elif attr == 'cor':
            return np.diag([1 for __ in range(f.nvar)])
        raise AttributeError(attr)
        
    # pro určitou konzistenci. Ne že bych chtěl zamykat dveře v Pythonu
    def __setattr__(f, attr, value):
        if attr in ('_UnCorD__marginals','_data'):
            f.__dict__[attr] = value
        else:
            #raise AttributeError('Аслыкъёсы воштыны уг луи!')
            raise AttributeError('Atribute %s of %s object is not writable' % (attr, f.__class__.__name__))
        
    def __frame(f, i):
        nvar = f.nvar
        sl = slice(i*nvar, (i+1)*nvar)
        return f._data[:,sl]
        
    def add_sample(f, sample, space='R'):
        # isinstance, ne?
        if f.__class__.__name__ == sample.__class__.__name__:
            if f.marginals == sample.marginals:
                f._data = np.vstack((f._data, sample._data))
                return f
        elif space not in ('R', 'Rn', 'P', 'GK', 'G', 'U'):
            # co jako, mám gettext sem tahnout?!
            raise ValueError('Zadaný prostor %s mi není znám' % space)
            raise ValueError('Unknown space %s' % space)
            
        # does sample is another f_model object? 
        try:
            sample_ = getattr(sample, space)
        except:
            # no
            sample_ = sample
            
        if space=='GK':
            space='G'
        elif space=='U':
            space='P'
            
        sample_dict = {space:np.array(sample_, dtype=float).reshape(-1, f.nvar)}
        f._chain(sample_dict)
        pdf_G = np.prod(stats.norm.pdf(sample_dict['G']), axis=1).reshape(-1, 1)
        pdfs_R = [f.marginals[i].pdf(sample_dict['R'][:, i]) for i in range(f.nvar)]
        # je tu fakt axis=0. Dochazí totíž v iterátoru k převracení
        pdf_R = np.prod(pdfs_R, axis=0).reshape(-1, 1)
        # nvar_Rn + nvar_R + nvar_P + nvar_G + pdf_R + pdf_G
        newdata = np.hstack((sample_dict['Rn'], sample_dict['R'], sample_dict['P'], sample_dict['G'], pdf_R, pdf_G))
            
        f._data = np.vstack((f._data, newdata))
            
        
    # drobná pomucka
    def new_sample(f, sample=None, space='R'):  
        f_copy = f()
        if sample is not None:
            f_copy.add_sample(sample, space)
        return f_copy
    
#    # drobná pomucka
#    def new_random_sample(f, ns=1):  
#        f_copy = f()
#        f_copy.add_sample(np.random.random((ns, f.nvar)), 'U')
#        return f_copy
     
    def _chain(f, sample_dict):
        # chain tam
        # чаль татысь
        if 'R' not in sample_dict and 'Rn' in sample_dict:
            sample_dict['R'] = np.empty_like(sample_dict['Rn'])
            for i in range(f.nvar):
                sample_dict['R'][:, i] = sample_dict['Rn'][:, i]*f.marginals[i].std() + f.marginals[i].mean()
                
        if 'P' not in sample_dict and 'R' in sample_dict:
            sample_dict['P'] = np.empty_like(sample_dict['R'])
            for i in range(f.nvar):
                sample_dict['P'][:, i] = f.marginals[i].cdf(sample_dict['R'][:, i])
                
        if 'G' not in sample_dict and 'P' in sample_dict:
            sample_dict['G'] = stats.norm.ppf(sample_dict['P'])
        
        # chain sem
        # чаль татчи
        elif 'P' not in sample_dict and 'G' in sample_dict:
            sample_dict['P'] = stats.norm.cdf(sample_dict['G'])
            
        if 'R' not in sample_dict and 'P' in sample_dict:
            sample_dict['R'] = np.empty_like(sample_dict['P'])
            for i in range(f.nvar):
                sample_dict['R'][:, i] = f.marginals[i].ppf(sample_dict['P'][:, i])
                
        if 'Rn' not in sample_dict and 'R' in sample_dict:
            sample_dict['Rn'] = np.empty_like(sample_dict['R'])
            for i in range(f.nvar):
                sample_dict['Rn'][:, i] = (sample_dict['R'][:, i] - f.marginals[i].mean())/f.marginals[i].std()
     
     
     
#    def Rn2R(f, sample):
#        sample_Rn = np.array(sample).reshape(-1, f.nvar)
#        sample_R = np.empty_like(sample_Rn)
#        for i in range(f.nvar):
#            sample_R[:, i] = sample_Rn[:, i]*f.marginals[i].std() + f.marginals[i].mean()
#        return sample_R
#        
#    def R2P(f, sample):
#        sample_R = np.array(sample).reshape(-1, f.nvar)
#        sample_P = np.empty_like(sample_R)
#        for i in range(f.nvar):
#            sample_P[:, i] = sample_Rn[:, i]*f.marginals[i].std() + f.marginals[i].mean()
#        return sample_P


Mode Type Size Ref File
100644 blob 10887 b53080c965974cd446104f9cf6d8c7bd84fe8416 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 26363 09d2f73c07fa657b9e2ea397e58414ee676de78c blackbox.py
100644 blob 13752 374874f5b3a786880e452f819c4e934437c68562 f_models.py
100644 blob 27159 eb3a87892b1d197f21d78f519ef93d86ca86c4ed g_models.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 518 d73fccb9e94a62a9226179e6fd097b09168acc45 plot.py
100644 blob 2002 8c8b0a95e464ac5d013e43d040595b87c1168099 plotly_plot.py
100644 blob 6251 fc18a41a14682b505a10a2947cfd6fdbea4c59cd reader.py
100644 blob 4228 278bfa08534fcbdf58652edf636fb700395a5f1d samplebox.py
100644 blob 5553 bac994ae58f1df80c7f8b3f33955af5402f5a4f3 sball.py
100644 blob 21454 5134b7a2c520acb415740f35786d58fabf6c4616 whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main