/include/micropather.h (f263a7f30ba45d28a50fb98264be19a040e48c44) (16089 bytes) (mode 100755) (type blob)

/*
Copyright (c) 2000-2013 Lee Thomason (www.grinninglizard.com)
Micropather

This software is provided 'as-is', without any express or implied 
warranty. In no event will the authors be held liable for any 
damages arising from the use of this software.

Permission is granted to anyone to use this software for any 
purpose, including commercial applications, and to alter it and 
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must 
not claim that you wrote the original software. If you use this 
software in a product, an acknowledgment in the product documentation 
would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and 
must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source 
distribution.
*/

// This source code had been altered from its original form,
// to remove an erroneous semicolon near the end and to use std::vector.

#ifndef GRINNINGLIZARD_MICROPATHER_INCLUDED
#define GRINNINGLIZARD_MICROPATHER_INCLUDED


/** @mainpage MicroPather
	
	MicroPather is a path finder and A* solver (astar or a-star) written in platform independent 
	C++ that can be easily integrated into existing code. MicroPather focuses on being a path 
	finding engine for video games but is a generic A* solver. MicroPather is open source, with 
	a license suitable for open source or commercial use.
*/

// This probably works to remove.
//#define GRINLIZ_NO_STL

#ifdef GRINLIZ_NO_STL
#	define MP_VECTOR micropather::MPVector
#else
#	include <vector>
#	define MP_VECTOR std::vector
#endif
#include <float.h>

#ifdef _DEBUG
	#ifndef DEBUG
		#define DEBUG
	#endif
#endif


#if defined(DEBUG)
#   if defined(_MSC_VER)
#       // "(void)0," is for suppressing C4127 warning in "assert(false)", "assert(true)" and the like
#       define MPASSERT( x )           if ( !((void)0,(x))) { __debugbreak(); } //if ( !(x)) WinDebugBreak()
#   elif defined (ANDROID_NDK)
#       include <android/log.h>
#       define MPASSERT( x )           if ( !(x)) { __android_log_assert( "assert", "grinliz", "ASSERT in '%s' at %d.", __FILE__, __LINE__ ); }
#   else
#       include <assert.h>
#       define MPASSERT                assert
#   endif
#   else
#       define MPASSERT( x )           {}
#endif


#if defined(_MSC_VER) && (_MSC_VER >= 1400 )
	#include <stdlib.h>
	typedef uintptr_t		MP_UPTR;
#elif defined (__GNUC__) && (__GNUC__ >= 3 )
	#include <stdint.h>
	#include <stdlib.h>
	typedef uintptr_t		MP_UPTR;
#else
	// Assume not 64 bit pointers. Get a new compiler.
	typedef unsigned MP_UPTR;
#endif

namespace micropather
{
#ifdef GRINLIZ_NO_STL

	/* WARNING: vector partial replacement. Does everything needed to replace std::vector
	   for micropather, but only works on Plain Old Data types. Doesn't call copy/construct/destruct
	   correctly for general use.
	 */
	template <typename T>
	class MPVector {
	public:
		MPVector() : m_allocated( 0 ), m_size( 0 ), m_buf ( 0 ) {}
		~MPVector()	{ delete [] m_buf; }

		void clear()						{ m_size = 0; }	// see warning above
		void resize( unsigned s )			{ capacity( s );
											  m_size = s;
											}	
		T& operator[](unsigned i)			{ MPASSERT( i>=0 && i<m_size );
											  return m_buf[i];
											}
		const T& operator[](unsigned i) const	{ MPASSERT( i>=0 && i<m_size );
												  return m_buf[i];
												}
		void push_back( const T& t )		{ capacity( m_size+1 );
											  m_buf[m_size++] = t;
											}
		unsigned size()	const				{ return m_size; }

	private:
		void capacity( unsigned cap ) {
			if ( m_allocated < cap ) { 
				unsigned newAllocated = cap * 3/2 + 16;
				T* newBuf = new T[newAllocated];
				MPASSERT( m_size <= m_allocated );
				MPASSERT( m_size < newAllocated );
				memcpy( newBuf, m_buf, sizeof(T)*m_size );
				delete [] m_buf;
				m_buf = newBuf;
				m_allocated = newAllocated;
			}
		}
		unsigned m_allocated;
		unsigned m_size;
		T* m_buf;
	};
#endif

	/**
		Used to pass the cost of states from the cliet application to MicroPather. This
		structure is copied in a vector.

		@sa AdjacentCost
	*/
	struct StateCost
	{
		void* state;			///< The state as a void*
		float cost;				///< The cost to the state. Use FLT_MAX for infinite cost.
	};


	/**
		A pure abstract class used to define a set of callbacks. 
		The client application inherits from 
		this class, and the methods will be called when MicroPather::Solve() is invoked.

		The notion of a "state" is very important. It must have the following properties:
		- Unique
		- Unchanging (unless MicroPather::Reset() is called)

		If the client application represents states as objects, then the state is usually
		just the object cast to a void*. If the client application sees states as numerical
		values, (x,y) for example, then state is an encoding of these values. MicroPather
		never interprets or modifies the value of state.
	*/
	class Graph
	{
	  public:
		virtual ~Graph() {}
	  
		/**
			Return the least possible cost between 2 states. For example, if your pathfinding 
			is based on distance, this is simply the straight distance between 2 points on the 
			map. If you pathfinding is based on minimum time, it is the minimal travel time 
			between 2 points given the best possible terrain.
		*/
		virtual float LeastCostEstimate( void* stateStart, void* stateEnd ) = 0;

		/** 
			Return the exact cost from the given state to all its neighboring states. This
			may be called multiple times, or cached by the solver. It *must* return the same
			exact values for every call to MicroPather::Solve(). It should generally be a simple,
			fast function with no callbacks into the pather.
		*/	
		virtual void AdjacentCost( void* state, MP_VECTOR< micropather::StateCost > *adjacent ) = 0;

		/**
			This function is only used in DEBUG mode - it dumps output to stdout. Since void* 
			aren't really human readable, normally you print out some concise info (like "(1,2)") 
			without an ending newline.
		*/
		virtual void  PrintStateInfo( void* state ) = 0;
	};


	class PathNode;

	struct NodeCost
	{
		PathNode* node;
		float cost;
	};


	/*
		Every state (void*) is represented by a PathNode in MicroPather. There
		can only be one PathNode for a given state.
	*/
	class PathNode
	{
	  public:
		void Init(	unsigned _frame,
					void* _state,
					float _costFromStart, 
					float _estToGoal, 
					PathNode* _parent );

		void Clear();
		void InitSentinel() {
			Clear();
			Init( 0, 0, FLT_MAX, FLT_MAX, 0 );
			prev = next = this;
		}	

		void *state;			// the client state
		float costFromStart;	// exact
		float estToGoal;		// estimated
		float totalCost;		// could be a function, but save some math.
		PathNode* parent;		// the parent is used to reconstruct the path
		unsigned frame;			// unique id for this path, so the solver can distinguish
								// correct from stale values

		int numAdjacent;		// -1  is unknown & needs to be queried
		int cacheIndex;			// position in cache

		PathNode *child[2];		// Binary search in the hash table. [left, right]
		PathNode *next, *prev;	// used by open queue

		bool inOpen;
		bool inClosed;

		void Unlink() {
			next->prev = prev;
			prev->next = next;
			next = prev = 0;
		}
		void AddBefore( PathNode* addThis ) {
			addThis->next = this;
			addThis->prev = prev;
			prev->next = addThis;
			prev = addThis;
		}
		#ifdef DEBUG
		void CheckList()
		{
			MPASSERT( totalCost == FLT_MAX );
			for( PathNode* it = next; it != this; it=it->next ) {
				MPASSERT( it->prev == this || it->totalCost >= it->prev->totalCost );
				MPASSERT( it->totalCost <= it->next->totalCost );
			}
		}
		#endif

		void CalcTotalCost() {
			if ( costFromStart < FLT_MAX && estToGoal < FLT_MAX )
				totalCost = costFromStart + estToGoal;
			else
				totalCost = FLT_MAX;
		}

	  private:

		void operator=( const PathNode& );
	};


	/* Memory manager for the PathNodes. */
	class PathNodePool
	{
	public:
		PathNodePool( unsigned allocate, unsigned typicalAdjacent );
		~PathNodePool();

		// Free all the memory except the first block. Resets all memory.
		void Clear();

		// Essentially:
		// pNode = Find();
		// if ( !pNode )
		//		pNode = New();
		//
		// Get the PathNode associated with this state. If the PathNode already
		// exists (allocated and is on the current frame), it will be returned. 
		// Else a new PathNode is allocated and returned. The returned object
		// is always fully initialized.
		//
		// NOTE: if the pathNode exists (and is current) all the initialization
		//       parameters are ignored.
		PathNode* GetPathNode(		unsigned frame,
									void* _state,
									float _costFromStart, 
									float _estToGoal, 
									PathNode* _parent );

		// Get a pathnode that is already in the pool.
		PathNode* FetchPathNode( void* state );

		// Store stuff in cache
		bool PushCache( const NodeCost* nodes, int nNodes, int* start );

		// Get neighbors from the cache
		// Note - always access this with an offset. Can get re-allocated.
		void GetCache( int start, int nNodes, NodeCost* nodes );

		// Return all the allocated states. Useful for visuallizing what
		// the pather is doing.
		void AllStates( unsigned frame, MP_VECTOR< void* >* stateVec );

	private:
		struct Block
		{
			Block* nextBlock;
			PathNode pathNode[1];
		};

		unsigned Hash( void* voidval );
		unsigned HashSize() const	{ return 1<<hashShift; }
		unsigned HashMask()	const	{ return ((1<<hashShift)-1); }
		void AddPathNode( unsigned key, PathNode* p );
		Block* NewBlock();
		PathNode* Alloc();

		PathNode**	hashTable;
		Block*		firstBlock;
		Block*		blocks;

		NodeCost*	cache;
		int			cacheCap;
		int			cacheSize;

		PathNode	freeMemSentinel;
		unsigned	allocate;				// how big a block of pathnodes to allocate at once
		unsigned	nAllocated;				// number of pathnodes allocated (from Alloc())
		unsigned	nAvailable;				// number available for allocation

		unsigned	hashShift;	
		unsigned	totalCollide;
	};


	/* Used to cache results of paths. Much, much faster
	   to return an existing solution than to calculate
	   a new one. A post on this is here: http://grinninglizard.com/altera/programming/a-path-caching-2/
	*/
	class PathCache
	{
	public:
		struct Item {
			// The key:
			void* start;
			void* end;

			bool KeyEqual( const Item& item ) const	{ return start == item.start && end == item.end; }
			bool Empty() const						{ return start == 0 && end == 0; }

			// Data:
			void*	next;
			float	cost;	// from 'start' to 'next'. FLT_MAX if unsolveable.

			unsigned Hash() const {
				const unsigned char *p = (const unsigned char *)(&start);
				unsigned int h = 2166136261U;

				for( unsigned i=0; i<sizeof(void*)*2; ++i, ++p ) {
					h ^= *p;
					h *= 16777619;
				}
				return h;
			}
		};

		PathCache( int itemsToAllocate );
		~PathCache();
		
		void Reset();
		void Add( const MP_VECTOR< void* >& path, const MP_VECTOR< float >& cost );
		void AddNoSolution( void* end, void* states[], int count );
		int Solve( void* startState, void* endState, MP_VECTOR< void* >* path, float* totalCost );

		int AllocatedBytes() const { return allocated * sizeof(Item); }
		int UsedBytes() const { return nItems * sizeof(Item); }

		int hit;
		int miss;

	private:
		void AddItem( const Item& item );
		const Item* Find( void* start, void* end );
		
		Item*	mem;
		int		allocated;
		int		nItems;
	};

	struct CacheData {
		CacheData() : nBytesAllocated(0), nBytesUsed(0), memoryFraction(0), hit(0), miss(0), hitFraction(0) {}
		int nBytesAllocated;
		int nBytesUsed;
		float memoryFraction;

		int hit;
		int miss;
		float hitFraction;
	};

	/**
		Create a MicroPather object to solve for a best path. Detailed usage notes are
		on the main page.
	*/
	class MicroPather
	{
		friend class micropather::PathNode;

	  public:
		enum
		{
			SOLVED,
			NO_SOLUTION,
			START_END_SAME,

			// internal
			NOT_CACHED
		};

		/**
			Construct the pather, passing a pointer to the object that implements
			the Graph callbacks.

			@param graph		The "map" that implements the Graph callbacks.
			@param allocate		How many states should be internally allocated at a time. This
								can be hard to get correct. The higher the value, the more memory
								MicroPather will use.
								- If you have a small map (a few thousand states?) it may make sense
								  to pass in the maximum value. This will cache everything, and MicroPather
								  will only need one main memory allocation. For a chess board, allocate 
								  would be set to 8x8 (64)
								- If your map is large, something like 1/4 the number of possible
								  states is good.
							    - If your state space is huge, use a multiple (5-10x) of the normal
								  path. "Occasionally" call Reset() to free unused memory.
			@param typicalAdjacent	Used to determine cache size. The typical number of adjacent states
									to a given state. (On a chessboard, 8.) Higher values use a little
									more memory.
			@param cache		Turn on path caching. Uses more memory (yet again) but at a huge speed
								advantage if you may call the pather with the same path or sub-path, which
								is common for pathing over maps in games.
		*/
		MicroPather( Graph* graph, unsigned allocate = 250, unsigned typicalAdjacent=6, bool cache=true );
		~MicroPather();

		/**
			Solve for the path from start to end.

			@param startState	Input, the starting state for the path.
			@param endState		Input, the ending state for the path.
			@param path			Output, a vector of states that define the path. Empty if not found.
			@param totalCost	Output, the cost of the path, if found.
			@return				Success or failure, expressed as SOLVED, NO_SOLUTION, or START_END_SAME.
		*/
		int Solve( void* startState, void* endState, MP_VECTOR< void* >* path, float* totalCost );

		/**
			Find all the states within a given cost from startState.

			@param startState	Input, the starting state for the path.
			@param near			All the states within 'maxCost' of 'startState', and cost to that state.
			@param maxCost		Input, the maximum cost that will be returned. (Higher values return
								larger 'near' sets and take more time to compute.)
			@return				Success or failure, expressed as SOLVED or NO_SOLUTION.
		*/
		int SolveForNearStates( void* startState, MP_VECTOR< StateCost >* near, float maxCost );

		/** Should be called whenever the cost between states or the connection between states changes.
			Also frees overhead memory used by MicroPather, and calling will free excess memory.
		*/
		void Reset();

		// Debugging function to return all states that were used by the last "solve" 
		void StatesInPool( MP_VECTOR< void* >* stateVec );
		void GetCacheData( CacheData* data );

	  private:
		MicroPather( const MicroPather& );	// undefined and unsupported
		void operator=( const MicroPather ); // undefined and unsupported
		
		void GoalReached( PathNode* node, void* start, void* end, MP_VECTOR< void* > *path );

		void GetNodeNeighbors(	PathNode* node, MP_VECTOR< NodeCost >* neighborNode );

		#ifdef DEBUG
		//void DumpStats();
		#endif

		PathNodePool			pathNodePool;
		MP_VECTOR< StateCost >	stateCostVec;	// local to Solve, but put here to reduce memory allocation
		MP_VECTOR< NodeCost >	nodeCostVec;	// local to Solve, but put here to reduce memory allocation
		MP_VECTOR< float >		costVec;

		Graph* graph;
		unsigned frame;						// incremented with every solve, used to determine if cached data needs to be refreshed
		PathCache* pathCache;
	};
}	// namespace grinliz

#endif



Mode Type Size Ref File
100644 blob 98 227abf3bfa53b2530dcc74495da7bd0ccdcb0775 .gitignore
100644 blob 225 9b00c2c2e7b4f0c1e338fdead65f17ba0af089c1 COPYING
100755 blob 43 45aea818a4a3202b2467509f28a481cce08834d2 Confectioner.command
100644 blob 12084 ca1d7e8e522f844c345c314ce6900efe486c41b5 Makefile
100644 blob 2723 b5a3f573f076ef740ca742ec9598043732e10c0e README.md
040000 tree - f854ec266095e18d4bee80b61191f009190533d9 base
100755 blob 156 84cb1387849f2ca98e53e43536d00af2dfabf7d3 caveconfec
100755 blob 28 41b0ef285892c86306eaa269f366dd04cb633d21 caveconfec.bat
100644 blob 195275 7dd3fffe9bb73069112dc76fcecd405fdc0c8235 confec.cpp
100644 blob 391231 cae78a24f09285accda1bd45c3361d92f4d55946 gamecontrollerdb.txt
040000 tree - a24928103d3d2c1929d85ab70447ac50d45a2384 include
100755 blob 1041 dd7c0bd7d8a6b4aeff53142375240872735d42a0 libs.cpp
100755 blob 27581 8350a63e947e8a4a55608fd090d128fef7b969a1 micropather.cpp
100644 blob 141235 f54e2d2631a628876a631456c043b77da5db78bd openjdk.pem
100755 blob 8 e9a74187b02a27b165dfa4f93bf6f060376d0ee6 steam_appid.txt
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/mse/ConfectionerEngine

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/mse/ConfectionerEngine

Clone this repository using git:
git clone git://git.rocketgit.com/user/mse/ConfectionerEngine

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main