Subject | Hash | Author | Date (UTC) |
---|---|---|---|
shanghaitech same size density map | 25fc2e9395dd67bb6cc273c7fe6cd64c3b154120 | Thai Thien | 2020-02-27 16:03:05 |
fix target1.unsqueeze(0) | bb5c46f121207fd9838ee085314df40513e2ed32 | Thai Thien | 2020-02-27 15:56:07 |
because GPU too small, we crop shanghaitech A | 0f97517dd8de5d3d75cf49af9aa9d20e4595ea3e | Thai Thien | 2020-02-27 15:52:21 |
meow | 3b9576511e597b4894c7c95ca06dc5219ef9c524 | tthien | 2020-02-27 15:44:39 |
fix wrong py name in script, dataset use only 1 worker | 3bd765c9aa79e47049a94547e57deb68c947001c | Thai Thien | 2020-02-27 15:41:44 |
minor fix | 5505b9a8b28df105e11a99d3462323ae9d507102 | Thai Thien | 2020-02-27 15:28:37 |
get ready for short training run with 30 epochs | 66dda0858561897cd5f81e10077459adb39d86dd | Thai Thien | 2020-02-27 15:22:01 |
implement attn_can_adcrowdnet | ffd38664a43d861c20cdc225746b9ce2a00260c7 | Thai Thien | 2020-02-27 15:10:27 |
WIP: add can-adcrowdnet | 5620b83449b31d00a367c8de77e431e19a5ccfb3 | Thai Thien | 2020-02-25 11:31:38 |
add readable timestamp viz | ae1fdb49ddb9ea77659529dceb7fb87c2790c8dc | Thai Thien | 2020-02-24 03:49:57 |
change save name prefix | c53a86f30fb8fd4e8f3a409eb67827d56a43ae5c | Thai Thien | 2020-02-02 10:48:15 |
training flow that work | fb242273e8f696916f9d1ff4bb76b4e5869799ef | Thai Thien | 2020-02-02 10:42:01 |
fix the dataloader for shanghaitech | 5f2aee9f316e6555e6a70c6ad037a4e6b491867b | Thai Thien | 2020-02-02 09:19:50 |
context aware visualize seem ok | 1bdb6ffe77ca4e40ef8f299b2506df2266243db4 | Thai Thien | 2020-02-02 05:07:10 |
visualize eval context aware network seem ok | f3fe45c23dfeab3730624737efabb0b14d23c25b | Thai Thien | 2020-02-02 04:50:34 |
visualize_shanghaitech_pacnn_with_perspective run without error | 12366a2de2bd60ff4bd36e6132d44e37dedf7462 | Thai Thien | 2020-02-02 04:21:16 |
eval context aware network on ShanghaiTechB can run | e8c454d2b6d287c830c1286c9a37884b3cfc615f | Thai Thien | 2020-02-02 04:09:14 |
import ShanghaiTechDataPath in data_util | e81eb56315d44375ff5c0e747d61456601492f8f | Thai Thien | 2020-02-02 04:04:36 |
add model_context_aware_network.py | 2a36025c001d85afc064c090f4d22987b328977b | Thai Thien | 2020-02-02 03:46:38 |
PACNN (TODO: test this) | 44d5ae7ec57c760fb4f105dd3e3492148a0cc075 | Thai Thien | 2020-02-02 03:40:26 |
File | Lines added | Lines deleted |
---|---|---|
data_flow.py | 30 | 0 |
train_attn_can_adcrowdnet.py | 1 | 1 |
File data_flow.py changed (mode: 100644) (index 77d19e0..356acaf) | |||
... | ... | def load_data_shanghaitech(img_path, train=True): | |
94 | 94 | return img, target1 | return img, target1 |
95 | 95 | ||
96 | 96 | ||
97 | def load_data_shanghaitech_same_size_density_map(img_path, train=True): | ||
98 | gt_path = img_path.replace('.jpg', '.h5').replace('images', 'ground-truth-h5') | ||
99 | img = Image.open(img_path).convert('RGB') | ||
100 | gt_file = h5py.File(gt_path, 'r') | ||
101 | target = np.asarray(gt_file['density']) | ||
102 | |||
103 | if train: | ||
104 | crop_size = (int(img.size[0] / 2), int(img.size[1] / 2)) | ||
105 | if random.randint(0, 9) <= -1: | ||
106 | |||
107 | dx = int(random.randint(0, 1) * img.size[0] * 1. / 2) | ||
108 | dy = int(random.randint(0, 1) * img.size[1] * 1. / 2) | ||
109 | else: | ||
110 | dx = int(random.random() * img.size[0] * 1. / 2) | ||
111 | dy = int(random.random() * img.size[1] * 1. / 2) | ||
112 | |||
113 | img = img.crop((dx, dy, crop_size[0] + dx, crop_size[1] + dy)) | ||
114 | target = target[dy:crop_size[1] + dy, dx:crop_size[0] + dx] | ||
115 | |||
116 | if random.random() > 0.8: | ||
117 | target = np.fliplr(target) | ||
118 | img = img.transpose(Image.FLIP_LEFT_RIGHT) | ||
119 | |||
120 | target1 = target | ||
121 | # target1 = target1.unsqueeze(0) # make dim (batch size, channel size, x, y) to make model output | ||
122 | target1 = np.expand_dims(target1, axis=0) # make dim (batch size, channel size, x, y) to make model output | ||
123 | return img, target1 | ||
124 | |||
97 | 125 | def load_data_shanghaitech_keepfull(img_path, train=True): | def load_data_shanghaitech_keepfull(img_path, train=True): |
98 | 126 | gt_path = img_path.replace('.jpg', '.h5').replace('images', 'ground-truth-h5') | gt_path = img_path.replace('.jpg', '.h5').replace('images', 'ground-truth-h5') |
99 | 127 | img = Image.open(img_path).convert('RGB') | img = Image.open(img_path).convert('RGB') |
... | ... | class ListDataset(Dataset): | |
311 | 339 | # load data fn | # load data fn |
312 | 340 | if dataset_name is "shanghaitech": | if dataset_name is "shanghaitech": |
313 | 341 | self.load_data_fn = load_data_shanghaitech | self.load_data_fn = load_data_shanghaitech |
342 | if dataset_name is "shanghaitech_same_size_density_map": | ||
343 | self.load_data_fn = load_data_shanghaitech_same_size_density_map | ||
314 | 344 | if dataset_name is "shanghaitech_keepfull": | if dataset_name is "shanghaitech_keepfull": |
315 | 345 | self.load_data_fn = load_data_shanghaitech_keepfull | self.load_data_fn = load_data_shanghaitech_keepfull |
316 | 346 | elif dataset_name is "ucf_cc_50": | elif dataset_name is "ucf_cc_50": |
File train_attn_can_adcrowdnet.py changed (mode: 100644) (index db87802..6195c3d) | |||
... | ... | if __name__ == "__main__": | |
28 | 28 | test_list = None | test_list = None |
29 | 29 | ||
30 | 30 | # create data loader | # create data loader |
31 | train_loader, val_loader, test_loader = get_dataloader(train_list, val_list, test_list, dataset_name="shanghaitech") | ||
31 | train_loader, val_loader, test_loader = get_dataloader(train_list, val_list, test_list, dataset_name="shanghaitech_same_size_density_map") | ||
32 | 32 | ||
33 | 33 | ||
34 | 34 | # model | # model |