Subject | Hash | Author | Date (UTC) |
---|---|---|---|
normal both ssim and psnr | 8c3dce50a264bea46fae09ec9390ebaa188134ed | Thai Thien | 2020-12-06 16:46:35 |
forgot the abs | da4b718d0e4c4e826fec189297807b478fa05bfc | Thai Thien | 2020-12-06 16:41:51 |
psnr abs 255 | ffaf76a25ca6c15ed8d36a77c21bd6d9278ab690 | Thai Thien | 2020-12-06 16:40:51 |
normalize 255 | d4e37756c87bb32afdd34ee368e0b5e826b9901f | Thai Thien | 2020-12-06 16:38:02 |
normalize y and y_pred | 2d66ee480bf65be75533e6ee1d8e0c30f781d4c8 | Thai Thien | 2020-12-06 16:34:44 |
x | b887624be4145f94800867033574b65e597de963 | Thai Thien | 2020-12-06 16:32:49 |
no more abs and stuff | 2c670747b22280596bd10aa37508405e7b94f05c | Thai Thien | 2020-12-06 16:31:58 |
self calculate psnr | 384da4f7f346e1e984aa4cd7698cc3627c374dba | Thai Thien | 2020-12-06 16:27:42 |
let max value is y_max | eef482d4f6b13eb78db9f4b32a6fd72501b0aeaf | Thai Thien | 2020-12-06 16:18:59 |
now we add data range as max value | cc50e0216660bd609bb562085a1c3011cadc8935 | Thai Thien | 2020-12-06 16:10:27 |
add max value | c6788b7e84722619775990f1bf9c57493768c309 | Thai Thien | 2020-12-06 16:06:10 |
try to rig ssim to mae to see how it work | 0881597408f3531982df43a1503a193c4874bcfa | Thai Thien | 2020-12-06 16:02:02 |
try remove padding | 0f1f913d8f99210f2f53309ac44c71ed9baf0b76 | Thai Thien | 2020-12-06 15:46:46 |
a | 147a73727888e4bbcd3584fb32ae60a62b43b77a | Thai Thien | 2020-12-06 15:41:18 |
reduction = sum | caaf7ea2f013097c2d0275a3c49bffb6ae7e4b69 | Thai Thien | 2020-12-06 15:40:13 |
cuda() and we fix | 41f49e7aa28595cb6438519dddb5e17434a44d3e | Thai Thien | 2020-12-06 15:34:53 |
minor fix 138 | 6178f63cb061ec7086a1748a8e9d4f4a03ea96e5 | Thai Thien | 2020-12-06 15:33:08 |
fix measure ssim psnr | 88bb9b78e8ae45199074aa1076b15c73f13e6cb6 | Thai Thien | 2020-12-06 15:30:58 |
print y and y_pred shape | 90ab90465dabc4bd1171f4500eb01c45cca97420 | Thai Thien | 2020-12-06 15:23:09 |
ccnn baseline | f02c3084f28f811879e36e9a309993d468535dc3 | Thai Thien | 2020-12-06 15:08:11 |
File | Lines added | Lines deleted |
---|---|---|
crowd_counting_error_metrics.py | 16 | 8 |
File crowd_counting_error_metrics.py changed (mode: 100644) (index 200eb21..a34e84e) | |||
... | ... | class CrowdCountingMeanSSIMabs(Metric): | |
140 | 140 | ||
141 | 141 | # rig_y = torch.sum(y) | # rig_y = torch.sum(y) |
142 | 142 | # rig_y_pred = torch.sum(y_pred) | # rig_y_pred = torch.sum(y_pred) |
143 | y_max = torch.max(y) | ||
144 | y_pred_max = torch.max(y_pred) | ||
145 | max_value = y_max | ||
146 | ssim_metric = piq.ssim(y, y_pred, reduction="sum", data_range=max_value.item()) | ||
143 | # y_max = torch.max(y) | ||
144 | # y_pred_max = torch.max(y_pred) | ||
145 | # max_value = y_max | ||
146 | |||
147 | y = y / torch.max(y) * 255 | ||
148 | y_pred = y_pred / torch.max(y_pred) * 255 | ||
149 | |||
150 | ssim_metric = piq.ssim(y, y_pred, reduction="sum", data_range=255) | ||
147 | 151 | # ssim_metric = torch.abs(rig_y - rig_y_pred) | # ssim_metric = torch.abs(rig_y - rig_y_pred) |
148 | 152 | ||
149 | 153 | ||
... | ... | class CrowdCountingMeanSSIMclamp(Metric): | |
238 | 242 | pad_density_map_tensor[:, 0, :y_pred.shape[2], :y_pred.shape[3]] = y_pred | pad_density_map_tensor[:, 0, :y_pred.shape[2], :y_pred.shape[3]] = y_pred |
239 | 243 | y_pred = pad_density_map_tensor | y_pred = pad_density_map_tensor |
240 | 244 | ||
241 | y_max = torch.max(y) | ||
242 | y_pred_max = torch.max(y_pred) | ||
243 | max_value = torch.max(y_max, y_pred_max) | ||
244 | ssim_metric = piq.ssim(y, y_pred, reduction="sum", data_range=max_value.item()) | ||
245 | # y_max = torch.max(y) | ||
246 | # y_pred_max = torch.max(y_pred) | ||
247 | # max_value = torch.max(y_max, y_pred_max) | ||
248 | |||
249 | y = y / torch.max(y) * 255 | ||
250 | y_pred = y_pred / torch.max(y_pred) * 255 | ||
251 | |||
252 | ssim_metric = piq.ssim(y, y_pred, reduction="sum", data_range=255) | ||
245 | 253 | ||
246 | 254 | self._sum += ssim_metric.item() | self._sum += ssim_metric.item() |
247 | 255 | # we multiply because ssim calculate mean of each image in batch | # we multiply because ssim calculate mean of each image in batch |