File percolation.py changed (mode: 100644) (index 7038340..a32ff93) |
... |
... |
import visualization |
12 |
12 |
### functions used by all percolation modes ### |
### functions used by all percolation modes ### |
13 |
13 |
############################################### |
############################################### |
14 |
14 |
def percolation(percolated_graph,intact_graph): |
def percolation(percolated_graph,intact_graph): |
15 |
|
return 100.0*(1.0-float(percolated_graph.num_vertices())/float(intact_graph.num_vertices())) |
|
|
15 |
|
return 100.0*(1.0-float(percolated_graph.num_vertices())/float(intact_graph.num_vertices())) |
16 |
16 |
|
|
17 |
17 |
def print_info(flc, glc): |
def print_info(flc, glc): |
18 |
18 |
print 'filtered graph - vertices: '+str(flc.num_vertices())+' / edges: '+str(flc.num_edges()) |
print 'filtered graph - vertices: '+str(flc.num_vertices())+' / edges: '+str(flc.num_edges()) |
|
... |
... |
def print_info(flc, glc): |
28 |
28 |
####### percolation modes ####### |
####### percolation modes ####### |
29 |
29 |
################################# |
################################# |
30 |
30 |
|
|
31 |
|
# These percolation modes take as input the mode name and n - a dictionary of |
|
|
31 |
|
# These percolation modes take as input the mode name and n - a dictionary of |
32 |
32 |
# numbers of nodes to take out (as keys) and corresponding percentages. |
# numbers of nodes to take out (as keys) and corresponding percentages. |
33 |
33 |
# They return a dictionary of percentage keys and percolation values. |
# They return a dictionary of percentage keys and percolation values. |
34 |
34 |
# Advanced percolation modes nest this dictionary within a dictionary of groups. |
# Advanced percolation modes nest this dictionary within a dictionary of groups. |
|
... |
... |
def failure(self, mode_name, n): |
47 |
47 |
for v in np.random.choice(list(self.glc.vertices()),size=max(n.keys()),replace=False): |
for v in np.random.choice(list(self.glc.vertices()),size=max(n.keys()),replace=False): |
48 |
48 |
self.exclusion_map[self.g.vertex(v)] = 0 |
self.exclusion_map[self.g.vertex(v)] = 0 |
49 |
49 |
counter += 1 |
counter += 1 |
50 |
|
if counter in n.keys(): |
|
|
50 |
|
if counter in n.keys(): |
51 |
51 |
print counter,'nodes removed' |
print counter,'nodes removed' |
52 |
52 |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
53 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
|
|
53 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
54 |
54 |
# largest component of graph f |
# largest component of graph f |
55 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
|
|
55 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
56 |
56 |
print_info(flc,self.glc) |
print_info(flc,self.glc) |
57 |
57 |
results[n[counter]] = percolation(flc,self.glc) |
results[n[counter]] = percolation(flc,self.glc) |
58 |
58 |
# visualize deterioration |
# visualize deterioration |
|
... |
... |
def random_walk(self, mode_name, n): |
71 |
71 |
alternate_list = list(self.label_map.a) |
alternate_list = list(self.label_map.a) |
72 |
72 |
np.random.shuffle(alternate_list) |
np.random.shuffle(alternate_list) |
73 |
73 |
results = rw(self,start,n,alternate_list,mode_name) |
results = rw(self,start,n,alternate_list,mode_name) |
74 |
|
|
|
|
74 |
|
|
75 |
75 |
#return dict(zip(percentages,percolations)) |
#return dict(zip(percentages,percolations)) |
76 |
76 |
return results |
return results |
77 |
|
|
|
|
77 |
|
|
78 |
78 |
##################################################################### |
##################################################################### |
79 |
79 |
|
|
80 |
80 |
################################# |
################################# |
|
... |
... |
def target_list(self, mode_name, n): |
96 |
96 |
for score in all_scores: |
for score in all_scores: |
97 |
97 |
#get nodes with highest value of score |
#get nodes with highest value of score |
98 |
98 |
nodes_max[score] = self.redis.zrange(self.score_prefix+score, -max(n.keys()), -1, withscores=False, score_cast_func=float).reverse() |
nodes_max[score] = self.redis.zrange(self.score_prefix+score, -max(n.keys()), -1, withscores=False, score_cast_func=float).reverse() |
99 |
|
|
|
|
99 |
|
|
100 |
100 |
#loop through all metrics and scores |
#loop through all metrics and scores |
101 |
101 |
for metric in all_metrics+all_scores: |
for metric in all_metrics+all_scores: |
102 |
102 |
print 'Taking out top nodes for metric',metric |
print 'Taking out top nodes for metric',metric |
103 |
|
|
|
|
103 |
|
|
104 |
104 |
# initialise variables and exclusion map |
# initialise variables and exclusion map |
105 |
105 |
counter = 0 |
counter = 0 |
106 |
106 |
self.exclusion_map.a = 1 |
self.exclusion_map.a = 1 |
|
... |
... |
def target_list(self, mode_name, n): |
110 |
110 |
vertex = gt.find_vertex(self.g,self.label_map,node)[0] |
vertex = gt.find_vertex(self.g,self.label_map,node)[0] |
111 |
111 |
self.exclusion_map[vertex] = 0 |
self.exclusion_map[vertex] = 0 |
112 |
112 |
counter += 1 |
counter += 1 |
113 |
|
if counter in n.keys(): |
|
|
113 |
|
if counter in n.keys(): |
114 |
114 |
print counter,'nodes removed' |
print counter,'nodes removed' |
115 |
115 |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
116 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
|
|
116 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
117 |
117 |
# largest component of graph f |
# largest component of graph f |
118 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
|
|
118 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
119 |
119 |
print_info(flc,self.glc) |
print_info(flc,self.glc) |
120 |
120 |
results[metric][n[counter]] = percolation(flc,self.glc) |
results[metric][n[counter]] = percolation(flc,self.glc) |
121 |
121 |
# visualize deterioration |
# visualize deterioration |
|
... |
... |
def hybrid_mode(self, mode_name, n): |
144 |
144 |
#get nodes with highest value of score |
#get nodes with highest value of score |
145 |
145 |
temp_list = self.redis.zrange(self.score_prefix+score, 0, -1, withscores=False, score_cast_func=float) |
temp_list = self.redis.zrange(self.score_prefix+score, 0, -1, withscores=False, score_cast_func=float) |
146 |
146 |
alternate_lists[score] = [node for node in reversed(temp_list)] |
alternate_lists[score] = [node for node in reversed(temp_list)] |
147 |
|
|
|
|
147 |
|
|
148 |
148 |
#loop through all metrics and scores |
#loop through all metrics and scores |
149 |
149 |
for metric in all_metrics+all_scores: |
for metric in all_metrics+all_scores: |
150 |
150 |
print 'Starting from node with highest value of metric',metric |
print 'Starting from node with highest value of metric',metric |
151 |
151 |
#initialise exclusion vertex property map |
#initialise exclusion vertex property map |
152 |
|
self.exclusion_map.a = 1 |
|
153 |
|
|
|
|
152 |
|
self.exclusion_map.a = 1 |
|
153 |
|
|
154 |
154 |
#first vertex for random walk |
#first vertex for random walk |
155 |
155 |
start = gt.find_vertex(self.g,self.label_map,alternate_lists[metric][0])[0] |
start = gt.find_vertex(self.g,self.label_map,alternate_lists[metric][0])[0] |
156 |
|
|
|
|
156 |
|
|
157 |
157 |
#do random walk |
#do random walk |
158 |
158 |
results[metric] = rw(self,start,n,alternate_lists[metric],mode_name+'_'+metric) |
results[metric] = rw(self,start,n,alternate_lists[metric],mode_name+'_'+metric) |
159 |
159 |
|
|
|
... |
... |
def russian(self, mode_name, n): |
172 |
172 |
print 'Shutting off node',int(v),'because it\'s Russian!' |
print 'Shutting off node',int(v),'because it\'s Russian!' |
173 |
173 |
self.exclusion_map[v] = 1 |
self.exclusion_map[v] = 1 |
174 |
174 |
counter += 1 |
counter += 1 |
175 |
|
# if counter in n.keys(): |
|
|
175 |
|
# if counter in n.keys(): |
176 |
176 |
# print counter,'nodes removed' |
# print counter,'nodes removed' |
177 |
177 |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
178 |
|
# f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
|
|
178 |
|
# f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
179 |
179 |
# largest component of graph f |
# largest component of graph f |
180 |
|
# flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
|
|
180 |
|
# flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
181 |
181 |
# print_info(flc,self.glc) |
# print_info(flc,self.glc) |
182 |
182 |
# results[n[counter]] = percolation(flc,self.glc) |
# results[n[counter]] = percolation(flc,self.glc) |
183 |
183 |
# visualize deterioration |
# visualize deterioration |
184 |
184 |
# visualization.draw_deterioration(self,self.sfdp,mode_name+'_'+metric+'_'+str(int(n[counter]))+'_pct') |
# visualization.draw_deterioration(self,self.sfdp,mode_name+'_'+metric+'_'+str(int(n[counter]))+'_pct') |
185 |
|
|
|
186 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
|
187 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
|
|
185 |
|
|
|
186 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
|
187 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
188 |
188 |
#results[max(n.values())] = percolation(flc,self.g) |
#results[max(n.values())] = percolation(flc,self.g) |
189 |
189 |
# visualize deterioration |
# visualize deterioration |
190 |
190 |
print 'Creating visualization #1 of the deterioration.' |
print 'Creating visualization #1 of the deterioration.' |
|
... |
... |
def russian(self, mode_name, n): |
198 |
198 |
############## Random Walk for the RW deletion modes ################ |
############## Random Walk for the RW deletion modes ################ |
199 |
199 |
##################################################################### |
##################################################################### |
200 |
200 |
|
|
201 |
|
# takes as input a start vertex, the number of vertices to take out |
|
|
201 |
|
# takes as input a start vertex, the number of vertices to take out |
202 |
202 |
# and an alternate list of vertices if the random walk reaches a dead end |
# and an alternate list of vertices if the random walk reaches a dead end |
203 |
203 |
|
|
204 |
204 |
def rw(self, vertex, n, alternate_list, mode_name): |
def rw(self, vertex, n, alternate_list, mode_name): |
205 |
205 |
# initialise |
# initialise |
206 |
|
results = {} |
|
|
206 |
|
results = {} |
207 |
207 |
|
|
208 |
208 |
self.exclusion_map[vertex] = 0 #take out start vertex |
self.exclusion_map[vertex] = 0 #take out start vertex |
209 |
209 |
# initialise graph filters |
# initialise graph filters |
210 |
210 |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
# graph without the excluded vertices (i.e. those that have value 0 in the exclusion map) |
211 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
|
|
211 |
|
f = gt.GraphView(self.g, vfilt = self.exclusion_map) |
212 |
212 |
# largest component of graph f |
# largest component of graph f |
213 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
|
|
213 |
|
flc = gt.GraphView(self.g, vfilt = gt.label_largest_component(f)) |
214 |
214 |
if 1 in n.keys(): |
if 1 in n.keys(): |
215 |
215 |
print '1 node removed' |
print '1 node removed' |
216 |
216 |
print_info(flc,self.glc) |
print_info(flc,self.glc) |
217 |
217 |
results[n[1]] = percolation(flc,self.glc) |
results[n[1]] = percolation(flc,self.glc) |
218 |
218 |
# visualize deterioration |
# visualize deterioration |
219 |
219 |
# visualization.draw_deterioration(self,self.sfdp,mode_name+'_'+str(int(n[1]))+'_pct') |
# visualization.draw_deterioration(self,self.sfdp,mode_name+'_'+str(int(n[1]))+'_pct') |
220 |
|
|
|
|
220 |
|
|
221 |
221 |
for i in range(max(n.keys())-1): |
for i in range(max(n.keys())-1): |
222 |
222 |
neighbours = list(vertex.all_neighbours()) |
neighbours = list(vertex.all_neighbours()) |
223 |
223 |
flag = 0 #decision flag |
flag = 0 #decision flag |
|
... |
... |
def rw(self, vertex, n, alternate_list, mode_name): |
230 |
230 |
vertex = neighbour |
vertex = neighbour |
231 |
231 |
flag = 1 |
flag = 1 |
232 |
232 |
break |
break |
233 |
|
|
|
234 |
|
# to be executed if no neighbours exist - choose the next node out of an alternative list |
|
|
233 |
|
|
|
234 |
|
# to be executed if no neighbours exist - choose the next node out of an alternative list |
235 |
235 |
if flag == 0: |
if flag == 0: |
236 |
236 |
# create a list of already used list members |
# create a list of already used list members |
237 |
|
used_list = [] |
|
|
237 |
|
used_list = [] |
238 |
238 |
for node in alternate_list: |
for node in alternate_list: |
239 |
239 |
vertex = gt.find_vertex(self.g,self.label_map,node)[0] |
vertex = gt.find_vertex(self.g,self.label_map,node)[0] |
240 |
240 |
used_list.append(node) |
used_list.append(node) |
241 |
241 |
if self.exclusion_map[vertex] != 0: |
if self.exclusion_map[vertex] != 0: |
242 |
242 |
break |
break |
243 |
243 |
if len(used_list) > 0: |
if len(used_list) > 0: |
244 |
|
for used_node in used_list: |
|
245 |
|
# remove used members from alternate list. This reduces calculation time in next iteration |
|
246 |
|
alternate_list.remove(used_node) |
|
247 |
|
|
|
|
244 |
|
for used_node in used_list: |
|
245 |
|
# remove used members from alternate list. This reduces calculation time in next iteration |
|
246 |
|
alternate_list.remove(used_node) |
|
247 |
|
|
248 |
248 |
self.exclusion_map[vertex] = 0 #take out vertex |
self.exclusion_map[vertex] = 0 #take out vertex |
249 |
249 |
f = gt.GraphView(self.g, vfilt = self.exclusion_map) #update graph (filtered) |
f = gt.GraphView(self.g, vfilt = self.exclusion_map) #update graph (filtered) |
250 |
250 |
if i+2 in n.keys(): |
if i+2 in n.keys(): |
|
... |
... |
def rw(self, vertex, n, alternate_list, mode_name): |
254 |
254 |
results[n[i+2]] = percolation(flc,self.glc) |
results[n[i+2]] = percolation(flc,self.glc) |
255 |
255 |
# visualize deterioration |
# visualize deterioration |
256 |
256 |
# visualization.draw_deterioration(self,self.sfdp,mode_name+'_'+str(int(n[i+2]))+'_pct') |
# visualization.draw_deterioration(self,self.sfdp,mode_name+'_'+str(int(n[i+2]))+'_pct') |
257 |
|
|
|
258 |
|
return results |
|
|
257 |
|
|
|
258 |
|
return results |
259 |
259 |
|
|
260 |
260 |
############################## |
############################## |
261 |
261 |
############################## |
############################## |