/pearson.py (7a6cc1ce0ca8ab13c12325ce4ac45044544ed9a1) (1575 bytes) (mode 100644) (type blob)
import redis as rd
import numpy as np
from scipy.stats import pearsonr
metrics = ['clustering_coefficient',
'degree',
'average_neighbor_degree',
'iterated_average_neighbor_degree',
'betweenness_centrality',
'eccentricity',
'average_shortest_path_length',
'corrected_clustering_coefficient',
'corrected_average_neighbor_degree',
'corrected_iterated_average_neighbor_degree']
rdb = rd.StrictRedis(host='localhost', port=6379, db=0)
correlations = {}
for metric1 in metrics:
correlations[metric1] = {}
for metric2 in metrics:
correlations[metric1][metric2] = (0,0)
if metric1 == metric2:
correlations[metric1][metric2] = (1,0)
continue
dict_metric1 = dict(rdb.zrange(metric1, 0, -1, withscores=True, score_cast_func=float))
dict_metric2 = dict(rdb.zrange(metric2, 0, -1, withscores=True, score_cast_func=float))
values_metric1 = []
values_metric2 = []
for key in sorted(dict_metric1.iterkeys()):
values_metric1.append(dict_metric1[key])
for key in sorted(dict_metric2.iterkeys()):
values_metric2.append(dict_metric2[key])
correlations[metric1][metric2] = pearsonr(values_metric1,values_metric2)
for source in correlations:
for target in correlations[source]:
rdb.hset("correlations:"+source+":"+target, "correlation", correlations[source][target][0])
rdb.hset("correlations:"+source+":"+target, "confidence", correlations[source][target][1])
Mode |
Type |
Size |
Ref |
File |
100644 |
blob |
71 |
775e9a6c11e2dbd63560e490be54df0f5d07636a |
README.md |
100644 |
blob |
0 |
e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 |
__init__.py |
100644 |
blob |
1256 |
489636a0073e3dfe2bfd04ee893d609d304a8490 |
advancedscores.py |
100644 |
blob |
4648 |
d4c8c5e1203305eb43693cd830a173e89e1d19bf |
config.py |
040000 |
tree |
- |
1eae5e19b1eff05e464e361e3f50f3df23f1b754 |
data |
100644 |
blob |
662 |
36006180d2297800e02a403802ba4c69244ef217 |
file_importer.py |
100644 |
blob |
716 |
359eb7179fa58d67044228556f7d9c38b5caec85 |
indexing.py |
100644 |
blob |
24064 |
281cf200c8f2a5511861ee13fa0b389433c2acdb |
metric_calculator.py |
100644 |
blob |
4982 |
d0b9c8eb7fcb8180748a37f1759e4e08b3b180fa |
metrics.py |
100644 |
blob |
1665 |
a959a8cc528f486a80a84e2ab233457870d255a1 |
normalizations.py |
100644 |
blob |
1575 |
7a6cc1ce0ca8ab13c12325ce4ac45044544ed9a1 |
pearson.py |
100644 |
blob |
554 |
29e5255c9f0970ee8d4f270aa35831d55e2fe368 |
start.py |
100644 |
blob |
2144 |
fb03eaa1cd8eb0d6c17b2019fe4c877a32bb7059 |
statistics.py |
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"
Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/coria/coria-backend
Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/coria/coria-backend
Clone this repository using git:
git clone git://git.rocketgit.com/user/coria/coria-backend
You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a
merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main