Subject | Hash | Author | Date (UTC) |
---|---|---|---|
mplot: šťourání s diagramy | 4831d87d7bfb953656ed68028bffe73597752a66 | I am | 2022-01-20 01:34:22 |
mplot: use empty markers for proxy points | dd9e0c8f79977a92615ef408862298ed5ee0d000 | I am | 2022-01-19 22:30:37 |
mplot.mart: set up spines linewidth | 4220ec6f715c78c1feac9966b5804ee995029bdf | I am | 2022-01-19 19:43:18 |
mplot: reduce arrow and axis linewidth | 666b1455f15ec803106fbfd773c1d3aa3877a1f9 | I am | 2022-01-19 18:04:37 |
mplot.maxes: přídáme férové cenzurováné vzorkování | 4b488e62a969f972882f982e903c6a3d252274a6 | I am | 2022-01-19 17:39:14 |
simplex: add simple filter function for rejection sampling | a58d3814dfd3366ef536c90b37fd50e3edccc9e9 | I am | 2022-01-19 17:38:08 |
whitebox: add rude approximation for sumexp. (Je teda opravdu hodně nepřesná) | 281f66ac70e21756415c8efecfdee50873b34b58 | I am | 2022-01-18 22:25:51 |
whitebox: add four betas class | 57a25000259e74f1ac28bb1bac6b0cc01dd5201c | I am | 2022-01-18 21:43:00 |
whitebox: introduce Gaussian_Z_prod_2D class with respective exact solution | 13e592f107918d4cc3daaeec1f08e38779a943aa | I am | 2022-01-18 18:51:23 |
mplot: polish maxes and mfigs | dfb9193da5fcb633fbe58fb39ff7b4432de4a5c5 | I am | 2022-01-18 00:44:56 |
testcases: add gaussian_2D module | c5e279c08bba39bdd82c79d15d00241c786c795d | I am | 2022-01-18 00:06:36 |
qt_gui.qt_testcases: simplify code for the unparametrized testcases | 60b7678186738107b3346beae7fb0744570d60fc | I am | 2022-01-18 00:05:34 |
mplot.mart: move setup_labels to mart module | 9d7783a3a9905a72c51b4fec76e367dffdbc4563 | I am | 2022-01-17 17:33:16 |
mplot.__init__: set up small non zero padding (0.01) | f0d23235b109c4224599eb0426ad0d9ee8b2a9b8 | I am | 2022-01-17 17:31:44 |
mplot: raster candidates, polishing | 63d6d00dfe7affc8ed3d05161fd4a5b50db62207 | I am | 2022-01-17 16:34:05 |
mplot: more figures | 3a7f54e09cd78a2fc2ff50d7cf5c142f04ffdc28 | I am | 2022-01-09 00:42:33 |
testcases: add proxy_prod 2D testcase | edb11ab54bcf677757974f133d2d66816b701ade | I am | 2022-01-09 00:41:27 |
stm_df: fix proxy, pandas nějak nám šťourá v našich boolean maticích | 1d9f360edfc03932a08dff8aad97f189b155e708 | I am | 2022-01-09 00:39:24 |
mplot.maxes: a little bit more to labels | d989a2d1b69b116a14f7ff81776f5f75d80cfea0 | I am | 2022-01-06 17:48:57 |
mplot.figs: add double and triple triangulations plots | 091361cc326239b552078c489f9f164ccda4f54b | I am | 2022-01-06 16:17:50 |
File | Lines added | Lines deleted |
---|---|---|
mplot/mfigs.py | 9 | 2 |
mplot/mgraph.py | 6 | 5 |
testcases/gaussian_2D.py | 1 | 1 |
File mplot/mfigs.py changed (mode: 100644) (index a233f58..96b8ab7) | |||
... | ... | from . import maxes | |
10 | 10 | from . import maxes3d | from . import maxes3d |
11 | 11 | ||
12 | 12 | __all__ = [ | __all__ = [ |
13 | 'convergence_diagram', 'double_proxy_diagram', | ||
13 | 'convergence_diagram', 'convergence_legend', 'double_proxy_diagram', | ||
14 | 14 | 'double_tri_R_plot', 'double_tri_R_twins_plot', 'double_plot', 'triple_plot', | 'double_tri_R_plot', 'double_tri_R_twins_plot', 'double_plot', 'triple_plot', |
15 | 15 | 'qhull_under_density', 'plane_under_density', 'dhull_vs_complete' | 'qhull_under_density', 'plane_under_density', 'dhull_vs_complete' |
16 | 16 | ] | ] |
... | ... | def convergence_diagram(fig, sample_box, space, lim=1000): | |
30 | 30 | ax.sample_box = sample_box | ax.sample_box = sample_box |
31 | 31 | maxes.convergence_diagram(ax) | maxes.convergence_diagram(ax) |
32 | 32 | ax.set_xlim(0, lim) | ax.set_xlim(0, lim) |
33 | |||
33 | |||
34 | def convergence_legend(fig, sample_box, space, lim=1000): | ||
35 | fig.set_figheight(3) | ||
36 | ax = fig.add_subplot(111) | ||
37 | ax.sample_box = sample_box | ||
38 | maxes.convergence_diagram(ax) | ||
39 | ax.legend(bbox_to_anchor=(0.5, -0.25), ncol=2, loc='upper center') | ||
40 | ax.set_xlim(0, lim) | ||
34 | 41 | ||
35 | 42 | def double_proxy_diagram(fig, sample_box, space, lim=1000): | def double_proxy_diagram(fig, sample_box, space, lim=1000): |
36 | 43 | ax1 = ax = fig.add_subplot(211) | ax1 = ax = fig.add_subplot(211) |
File mplot/mgraph.py changed (mode: 100644) (index 7dfda89..0357958) | |||
... | ... | def trii_estimation_fill(ax, df): | |
72 | 72 | ||
73 | 73 | #č ok, tak uděláme všecko dohromady | #č ok, tak uděláme všecko dohromady |
74 | 74 | #č datarám, jako vždy, uživatel donese svůj vlastní | #č datarám, jako vždy, uživatel donese svůj vlastní |
75 | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", plot_outside=True): | ||
75 | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", | ||
76 | plot_outside=True, **kwargs): | ||
76 | 77 | # some default values | # some default values |
77 | 78 | # if not ax.get_xlabel(): | # if not ax.get_xlabel(): |
78 | 79 | # ax.set_xlabel('Number of simulations') | # ax.set_xlabel('Number of simulations') |
... | ... | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", plot_out | |
87 | 88 | ||
88 | 89 | v = df['vertex_estimation'].to_numpy() | v = df['vertex_estimation'].to_numpy() |
89 | 90 | wv = df['weighted_vertex_estimation'].to_numpy() | wv = df['weighted_vertex_estimation'].to_numpy() |
90 | ax.plot(df.index, wv, '-r', label="weighted $p_f$ estimation", zorder=100500) | ||
91 | ax.plot(df.index, v, '-m', label="simple $p_f$ estimation", zorder=1050) | ||
91 | ax.plot(df.index, wv, '-r', label="weighted $p_f$ estimation", zorder=100500, **kwargs) | ||
92 | ax.plot(df.index, v, '-m', label="simple $p_f$ estimation", zorder=1050, **kwargs) | ||
92 | 93 | ||
93 | 94 | ||
94 | 95 | #č teď čáry | #č teď čáry |
95 | 96 | if plot_outside: | if plot_outside: |
96 | 97 | o = df['outside'].to_numpy() | o = df['outside'].to_numpy() |
97 | 98 | ax.plot(df.index, o, '-', color="#AAAAAA", \ | ax.plot(df.index, o, '-', color="#AAAAAA", \ |
98 | label="outside domain estimation", zorder=15) | ||
99 | label="outside domain estimation", zorder=15, **kwargs) | ||
99 | 100 | ||
100 | 101 | if pf_exact is not None: | if pf_exact is not None: |
101 | ax.axhline(pf_exact, c='b', label=pf_exact_method) | ||
102 | ax.axhline(pf_exact, c='b', label=pf_exact_method, **kwargs) | ||
102 | 103 | ||
103 | 104 | ||
104 | 105 |
File testcases/gaussian_2D.py changed (mode: 100644) (index f7da17c..cee5e27) | |||
... | ... | add('four_branch') | |
36 | 36 | def four_branch(): | def four_branch(): |
37 | 37 | wt = WhiteBox(f, gm.FourBranch2D(k1=3, k2=7)) | wt = WhiteBox(f, gm.FourBranch2D(k1=3, k2=7)) |
38 | 38 | wt.pf_exact = 2.34e-03 | wt.pf_exact = 2.34e-03 |
39 | wt.pf_exact_method = 'known value' #"some guys said me that" | ||
39 | wt.pf_exact_method = 'known $p_f$ value' #"some guys said me that" | ||
40 | 40 | wt.description = "Four branch system. Structural Safety 62 (2016) 66-75" | wt.description = "Four branch system. Structural Safety 62 (2016) 66-75" |
41 | 41 | return wt | return wt |
42 | 42 |