iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".
List of commits:
Subject Hash Author Date (UTC)
stm_df: fix proxy, pandas nějak nám šťourá v našich boolean maticích 1d9f360edfc03932a08dff8aad97f189b155e708 I am 2022-01-09 00:39:24
mplot.maxes: a little bit more to labels d989a2d1b69b116a14f7ff81776f5f75d80cfea0 I am 2022-01-06 17:48:57
mplot.figs: add double and triple triangulations plots 091361cc326239b552078c489f9f164ccda4f54b I am 2022-01-06 16:17:50
mplot.maxes: aspoň nějak nastavit popísky os 50e8e467c24d73d9522166183275deab547243f8 I am 2022-01-06 16:16:36
mplot.maxes: add labels to candidates plot f8aa0f271a8d30cb7d79206290409f862c406a51 I am 2022-01-06 12:14:48
mplot.maxes: add candidates sampling (rejection-like) plot 5a15e10a9a462dd409e0627528bcb8910df77c7e I am 2022-01-06 09:40:38
mplot.maxes: add candidates plot 11e156edc351ca84fde742edf7ea1d85c3b0bc38 I am 2022-01-06 08:15:43
mplot.maxes: polish tri plots a little bit 9a4e0a18061e2d9f48c0c32c200bd1a408ceb77f I am 2022-01-05 13:15:00
mplot.mart: add plot_points() function 2c799e22d9f45b825a7f8a795ce6b9fe5fbd9c76 I am 2022-01-05 13:14:12
mplot.maxes: add convergence diagrams 813b1e8e9dd9d1e51951c51234910cdf2281cde8 I am 2022-01-05 09:07:18
mplot.mgraph: hračky s legendou 198cc40947d48b2a3cde990254def7d57c1535a6 I am 2022-01-05 09:04:23
mplot: apply default settings to figures 765d830e0230b3d85f079eb26c6eddfdb624b859 I am 2022-01-05 09:03:15
simplex: try garbage collection 45148d2665eea195c05de5852b15485d83cb7223 I am 2022-01-05 06:10:46
testcases: add Gaussian Z_min testcase 50bc3f27365e60db67f100c89ebc49b52e948645 I am 2022-01-04 13:55:59
whitebox: add Gaussian Z_min whitebox e989c87895d681920056558a0b9473b93c3b299b I am 2022-01-04 13:54:37
schemes: přídat pár komentářů k schematům e8f1665d43cfb70e89716f591852538df0e27d8c I am 2022-01-04 09:00:36
mplot.maxes: tri_nodes_plot is almost ready. Zbyvá to udělat hezky 251a0f4b7909a5468453cfb518c2bbb4064cce51 I am 2022-01-04 06:42:36
mplot.maxes: add complete tri plots 08c6e421188c4251cae1aa664a69bdc3a0afb314 I am 2022-01-04 05:45:21
mplot.mart: add tri_plot() function aace2f9d02b7744651a089c164af9b7b5824729e I am 2022-01-04 05:44:14
simplex: fix use before initialization ff8be3dcc679c4893948d7d1dc6c45402ccee81b I am 2022-01-04 05:43:17
Commit 1d9f360edfc03932a08dff8aad97f189b155e708 - stm_df: fix proxy, pandas nějak nám šťourá v našich boolean maticích
Author: I am
Author date (UTC): 2022-01-09 00:39
Committer name: I am
Committer date (UTC): 2022-01-09 00:39
Parent(s): d989a2d1b69b116a14f7ff81776f5f75d80cfea0
Signer:
Signing key:
Signing status: N
Tree: d81eb5f1c6dddd56414a2e4d1780cbd6936e9f4e
File Lines added Lines deleted
mplot/mart.py 2 2
qt_gui/qt_plot.py 1 1
stm_df.py 1 1
File mplot/mart.py changed (mode: 100644) (index e346daf..b0ea011)
... ... def scatter_points(ax, **kwargs):
57 57 failsi = ax.sample_box.failsi failsi = ax.sample_box.failsi
58 58
59 59 try: # proxy denotes to implicitly-known values try: # proxy denotes to implicitly-known values
60 proxy = ax.sample_box.proxy
60 proxy = ax.sample_box.proxy.astype(bool)
61 61 except AttributeError: except AttributeError:
62 62 proxy = np.full(nsim, False, dtype=np.bool) proxy = np.full(nsim, False, dtype=np.bool)
63 63
 
... ... def plot_points(ax, ls='', **kwargs):
93 93 failsi = ax.sample_box.failsi failsi = ax.sample_box.failsi
94 94
95 95 try: # proxy denotes to implicitly-known values try: # proxy denotes to implicitly-known values
96 proxy = ax.sample_box.proxy
96 proxy = ax.sample_box.proxy.astype(bool)
97 97 except AttributeError: except AttributeError:
98 98 proxy = np.full(nsim, False, dtype=np.bool) proxy = np.full(nsim, False, dtype=np.bool)
99 99
File qt_gui/qt_plot.py changed (mode: 100644) (index 2bc6f78..3190b47)
... ... class BasePlotting:
291 291 failsi = sample_box.failsi failsi = sample_box.failsi
292 292
293 293 try: # proxy denotes to implicitly-known values try: # proxy denotes to implicitly-known values
294 proxy = sample_box.proxy
294 proxy = sample_box.proxy.astype(bool)
295 295 except AttributeError: except AttributeError:
296 296 proxy = np.full(nsim, False, dtype=np.bool) proxy = np.full(nsim, False, dtype=np.bool)
297 297
File stm_df.py changed (mode: 100644) (index 6965eab..da8a8aa)
... ... def proxy(dice_box, nsim):
53 53 index = np.array(nsim)-1 index = np.array(nsim)-1
54 54 #č indexy musíme o jedničku změnšit #č indexy musíme o jedničku změnšit
55 55 #č výsledek nikoliv. Takže v cajku. #č výsledek nikoliv. Takže v cajku.
56 return np.cumsum(~proxy)[index]
56 return np.cumsum(~proxy.astype(bool))[index]
57 57
58 58
59 59 #č vysledek dlouhého přemyšlení, co a jak mám udělat. #č vysledek dlouhého přemyšlení, co a jak mám udělat.
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main