Subject | Hash | Author | Date (UTC) |
---|---|---|---|
mplot.maxes: add candidates sampling (rejection-like) plot | 5a15e10a9a462dd409e0627528bcb8910df77c7e | I am | 2022-01-06 09:40:38 |
mplot.maxes: add candidates plot | 11e156edc351ca84fde742edf7ea1d85c3b0bc38 | I am | 2022-01-06 08:15:43 |
mplot.maxes: polish tri plots a little bit | 9a4e0a18061e2d9f48c0c32c200bd1a408ceb77f | I am | 2022-01-05 13:15:00 |
mplot.mart: add plot_points() function | 2c799e22d9f45b825a7f8a795ce6b9fe5fbd9c76 | I am | 2022-01-05 13:14:12 |
mplot.maxes: add convergence diagrams | 813b1e8e9dd9d1e51951c51234910cdf2281cde8 | I am | 2022-01-05 09:07:18 |
mplot.mgraph: hračky s legendou | 198cc40947d48b2a3cde990254def7d57c1535a6 | I am | 2022-01-05 09:04:23 |
mplot: apply default settings to figures | 765d830e0230b3d85f079eb26c6eddfdb624b859 | I am | 2022-01-05 09:03:15 |
simplex: try garbage collection | 45148d2665eea195c05de5852b15485d83cb7223 | I am | 2022-01-05 06:10:46 |
testcases: add Gaussian Z_min testcase | 50bc3f27365e60db67f100c89ebc49b52e948645 | I am | 2022-01-04 13:55:59 |
whitebox: add Gaussian Z_min whitebox | e989c87895d681920056558a0b9473b93c3b299b | I am | 2022-01-04 13:54:37 |
schemes: přídat pár komentářů k schematům | e8f1665d43cfb70e89716f591852538df0e27d8c | I am | 2022-01-04 09:00:36 |
mplot.maxes: tri_nodes_plot is almost ready. Zbyvá to udělat hezky | 251a0f4b7909a5468453cfb518c2bbb4064cce51 | I am | 2022-01-04 06:42:36 |
mplot.maxes: add complete tri plots | 08c6e421188c4251cae1aa664a69bdc3a0afb314 | I am | 2022-01-04 05:45:21 |
mplot.mart: add tri_plot() function | aace2f9d02b7744651a089c164af9b7b5824729e | I am | 2022-01-04 05:44:14 |
simplex: fix use before initialization | ff8be3dcc679c4893948d7d1dc6c45402ccee81b | I am | 2022-01-04 05:43:17 |
mplot.maxes: prepare convex_hull_plot() function | 732f16a441c1a5f1160b45d91a050683ee70ff5d | I am | 2022-01-03 15:26:59 |
mplot.mart: comment out old convex plot function, prepare qhull_plot instead | 59de205056903adf87f84c5c1b022c3c83fa9c57 | I am | 2022-01-03 15:24:30 |
mplot.mgraph: prepare orth graph routines | 74e30ed99fcc6e68c6b3bf7e55bbd93fe8f26d13 | I am | 2022-01-02 11:18:11 |
convex_hull: complicate orth estimator | ba5f40eaf0f5f4012ef07f5684d58481cefbfe09 | I am | 2021-12-28 13:56:19 |
reader: explicitly use utf-8 encoding. (Nemělo by to nic pokazit.. Pitomé nastavení ve Windows) | 17bc8a9692695c22f78f8a39ed8aaddd4bfa4808 | I am | 2021-12-26 22:59:41 |
File | Lines added | Lines deleted |
---|---|---|
mplot/maxes.py | 36 | 1 |
File mplot/maxes.py changed (mode: 100644) (index 201c029..4e13b7b) | |||
... | ... | from . import mgraph | |
19 | 19 | ||
20 | 20 | # it is mostly for qt_plot, it offers availiable options to user | # it is mostly for qt_plot, it offers availiable options to user |
21 | 21 | __all__ = [ | __all__ = [ |
22 | 'candidates_plot', | ||
22 | 'candidates_plot', 'candidates_sampling_plot', | ||
23 | 23 | 'convex_hull_plot', 'tri_plot', 'tri_nodes_plot', | 'convex_hull_plot', 'tri_plot', 'tri_nodes_plot', |
24 | 24 | 'tri_R_plot', 'tri_GK_plot', | 'tri_R_plot', 'tri_GK_plot', |
25 | 25 | 'tri_R_nodes_plot', 'tri_GK_nodes_plot', | 'tri_R_nodes_plot', 'tri_GK_nodes_plot', |
... | ... | __all__ = [ | |
34 | 34 | ] | ] |
35 | 35 | ||
36 | 36 | ||
37 | def candidates_sampling_plot(ax, linewidths=[0.7, 0.5, 0.4, 0.3, 0.2, 0.1]): | ||
38 | from .. import simplex as six | ||
39 | from .. import estimation as stm | ||
40 | |||
41 | def _stm_draw_nodes(*args, **kwargs): | ||
42 | #č v tomto plot bude šilený bordel v tom, kdo kolbek spouští | ||
43 | #č a kdo mu co tam posílá. Na event a na nodes spolehat ale můžeme | ||
44 | # | ||
45 | # callback's signature: sx, indices=, simplex=, nodes=, cell_stats= | ||
46 | # positional "sx" is Tri object itself | ||
47 | # "indices" are numbers of simplex vertices | ||
48 | # "simplex" are vertices itself | ||
49 | # "nodes" is what we really want to draw | ||
50 | |||
51 | event = kwargs['cell_stats']['event'] | ||
52 | |||
53 | if event in ('mix', 'outside'): | ||
54 | mart.plot_sample(ax, kwargs['nodes'], ls='', marker='.',\ | ||
55 | mec="#00007E", mfc="#00007E", ms=1.5, alpha=0.5) | ||
56 | |||
57 | data = stm.fast_simplex_estimation(ax.sample_box, model_space=ax.space,\ | ||
58 | sampling_space=ax.space, \ | ||
59 | weighting_space=ax.space,\ | ||
60 | outside_budget=1000, \ | ||
61 | simplex_budget=100,\ | ||
62 | callback=_stm_draw_nodes, design=None) | ||
63 | |||
64 | mart.setup(ax) | ||
65 | mart.curly(ax, linewidths=linewidths) | ||
66 | mart.triplot(ax, color="#B2B2B2", lw=0.5, zorder=1000) | ||
67 | mart.plot_points(ax, ms=5, zorder=100500) | ||
68 | try: | ||
69 | mart.plot_boundaries(ax, lw=0.7, zorder=10500) | ||
70 | except: | ||
71 | pass | ||
37 | 72 | ||
38 | 73 | def candidates_plot(ax): | def candidates_plot(ax): |
39 | 74 | tri_plot(ax, tri_space=None, linewidths=[0.7, 0.5, 0.4, 0.3]) | tri_plot(ax, tri_space=None, linewidths=[0.7, 0.5, 0.4, 0.3]) |