Subject | Hash | Author | Date (UTC) |
---|---|---|---|
mplot.mgraph.tri_estimation_plot: draw p_mixed line navíc | b59ec8cbaeb671a130edee5df206d57099ecb9bf | I am | 2022-01-27 16:41:53 |
testcases.gaussian_2D: fix four branch pf_exact | f9d0f71ad6a4e6af6843c6b36688b8a002495bdc | I am | 2022-01-27 06:14:40 |
mplot: add mprod plot, polish pprod | 045c5401dad6abca019da21fd42da5bfb671b909 | I am | 2022-01-26 04:16:00 |
mplot.mfigs: add quadruple plot | 8ef6b85bedc31f1908ce25634bda84bdc07edef9 | I am | 2022-01-26 01:30:01 |
testcases.gaussian_2D: add final pf value to metaball case | 5be29e59b1cd789da32d62caff1dcfb9c231a40e | I am | 2022-01-26 01:28:52 |
g_models: add boundary finding for metaball function | 5ea3011d11572d2fa98d77819cc1ba333e6b4016 | I am | 2022-01-26 00:38:21 |
mplot: polish | ad5819ced9f1be64c8d731813c575c1ec854421d | I am | 2022-01-25 03:39:22 |
testcases.gaussian_2D: add pf_exact to the black swan | 38e19e42884234afc467a0ee7af9699af1f84e96 | I am | 2022-01-25 03:37:59 |
mplot.maxes: pass nrod to plot_boundaries() | b87c6c58900b2b7f9a11f238eb9b7f2b054e9abf | I am | 2022-01-24 21:06:35 |
mplot: fix global settings overwrite | 28a6304a895b0f2f53482ae086f0f2900adfd65e | I am | 2022-01-24 21:02:56 |
qt_gui.qt_dicebox: add dumb DiceBox widget | d609cbbd928859a7c2ebf05ecdec2878d5356f9c | I am | 2022-01-24 18:43:53 |
mplot.maxes: parametrize tri plots | 395bbad17802accecdc978462b0aed5a8828534b | I am | 2022-01-23 04:35:10 |
mplot.maxes: adjust triple plot marker sizes and lineweights | 7e8b6eea3a27569542b5d15a2002ee1b77205672 | I am | 2022-01-22 21:39:02 |
mplot.maxes: add convergence legend | 59405e29e76faf2a74d5bddd994c0252f7dfdb7d | I am | 2022-01-22 01:48:40 |
mplot.mart: keep frame in U space | b6fda7b143da2c7a129ac0db12cf33e5325547d5 | I am | 2022-01-21 03:22:38 |
mplot.mfigs: add more of that points + triangulation plots, you know... | 68072e812fb7ed4a39cfbf138cd216e7d4214d8a | I am | 2022-01-20 19:25:43 |
testcases.gaussian_2D: add fajvka, circle, parabola. Justify sinball | 330595743710deee9924cd077302f5c45fae7f83 | I am | 2022-01-20 19:24:41 |
mplot: šťourání s diagramy | 4831d87d7bfb953656ed68028bffe73597752a66 | I am | 2022-01-20 01:34:22 |
mplot: use empty markers for proxy points | dd9e0c8f79977a92615ef408862298ed5ee0d000 | I am | 2022-01-19 22:30:37 |
mplot.mart: set up spines linewidth | 4220ec6f715c78c1feac9966b5804ee995029bdf | I am | 2022-01-19 19:43:18 |
File | Lines added | Lines deleted |
---|---|---|
mplot/mgraph.py | 9 | 4 |
File mplot/mgraph.py changed (mode: 100644) (index 0357958..8dd8466) | |||
... | ... | def trii_estimation_fill(ax, df): | |
73 | 73 | #č ok, tak uděláme všecko dohromady | #č ok, tak uděláme všecko dohromady |
74 | 74 | #č datarám, jako vždy, uživatel donese svůj vlastní | #č datarám, jako vždy, uživatel donese svůj vlastní |
75 | 75 | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", |
76 | plot_outside=True, **kwargs): | ||
76 | plot_outside=True, plot_mix=True, **kwargs): | ||
77 | 77 | # some default values | # some default values |
78 | 78 | # if not ax.get_xlabel(): | # if not ax.get_xlabel(): |
79 | 79 | # ax.set_xlabel('Number of simulations') | # ax.set_xlabel('Number of simulations') |
... | ... | def tri_estimation_plot(ax, df, pf_exact=None, pf_exact_method="$p_f$", | |
88 | 88 | ||
89 | 89 | v = df['vertex_estimation'].to_numpy() | v = df['vertex_estimation'].to_numpy() |
90 | 90 | wv = df['weighted_vertex_estimation'].to_numpy() | wv = df['weighted_vertex_estimation'].to_numpy() |
91 | ax.plot(df.index, wv, '-r', label="weighted $p_f$ estimation", zorder=100500, **kwargs) | ||
92 | ax.plot(df.index, v, '-m', label="simple $p_f$ estimation", zorder=1050, **kwargs) | ||
91 | ax.plot(df.index, wv, '-r', label="weighted $p_f$ estimation", zorder=15, **kwargs) | ||
92 | ax.plot(df.index, v, '-m', label="simple $p_f$ estimation", zorder=150, **kwargs) | ||
93 | 93 | ||
94 | 94 | ||
95 | 95 | #č teď čáry | #č teď čáry |
96 | 96 | if plot_outside: | if plot_outside: |
97 | 97 | o = df['outside'].to_numpy() | o = df['outside'].to_numpy() |
98 | 98 | ax.plot(df.index, o, '-', color="#AAAAAA", \ | ax.plot(df.index, o, '-', color="#AAAAAA", \ |
99 | label="outside domain estimation", zorder=15, **kwargs) | ||
99 | label="outside domain estimation", zorder=100500, **kwargs) | ||
100 | |||
101 | if plot_mix: | ||
102 | m = df['mix'].to_numpy() | ||
103 | ax.plot(df.index, m, '-', color="#FF8000", \ | ||
104 | label="mixed domain estimation", zorder=1050, **kwargs) | ||
100 | 105 | ||
101 | 106 | if pf_exact is not None: | if pf_exact is not None: |
102 | 107 | ax.axhline(pf_exact, c='b', label=pf_exact_method, **kwargs) | ax.axhline(pf_exact, c='b', label=pf_exact_method, **kwargs) |