iam-git / WellMet (public) (License: MIT) (since 2021-08-31) (hash sha1)
WellMet is pure Python framework for spatial structural reliability analysis. Or, more specifically, for "failure probability estimation and detection of failure surfaces by adaptive sequential decomposition of the design domain".

/lukiskon.py (96162a5d181b8307507ba2f44bafe984aa939163) (29393 bytes) (mode 100644) (type blob)

# -*- coding: utf-8 -*-
#♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥
"""
♥Люкиськон яке люкаськон понна функциос?

Clustering and decomposition are nearly the same, right?


U Voroného diagramu ani není jásně co vlastně děláme - 
dělíme prostor na úseky, nebo přířazujeme části prostoru jednotlivým vzorkům, sjednocujeme tečíčky?
Stejně tak nerozlišitelně se to popísuje v udmurtštině - slovy ľukiš'kón a ľukaš'kón.
"""

"""
kechato actually means checked, checkered, here denotes something like "orthogonal net"    

kěčató znamená kostkovaný
"""
#♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥♥

import numpy as np
#import numpy.ma as ma
#import scipy.stats as stats
#import pandas as pd


    # vtipné ǐ-čko
def kechato_potential(samples, candidates, weights=None, kechato_space='U'):
    
    
    samples_model = getattr(samples, kechato_space)
    nsim, nvar = np.shape(samples_model) 
    
    candidates_model = getattr(candidates, kechato_space)
    nis = len(candidates_model)
    
    PDF = samples.pdf(kechato_space)
    pdf = candidates.pdf(kechato_space)
    
    if weights is None:
        weights = (1 for __ in range(nsim))
    
    # kechato potential
    ksee = np.ones(nis)
    
    for i, pivot_point, weight in zip(range(nsim), samples_model, weights): # for all points in sample
        
        deltas = np.abs(candidates_model - pivot_point)
        bases = np.prod(deltas, axis=1)
        # kruci, je to na dobrou diskusi
        # ale prečo chcu aby potenciál byl nulový 
        # u kandidatů s nulovou hustotou
        #heights = (PDF[i] + pdf) / 2
        # uarianta 1
        #heights = pdf
        # uarianta 2
        heights = np.sqrt(PDF[i] * pdf)
        volumes = bases * heights
            
        # side effect
        ksee *= volumes * weight
                
    
    return ksee            












# ToDo normování prostoru. Jak?
def IS_localized_candidates(wx, nis_budget): # wx like whitebox
    nsim, nvar = np.shape(wx.sampled_plan_P)
        
    
    sampled_plan_Rn_ma = np.ma.asarray(wx.sampled_plan_Rn)
    
    # minimálně jeden kandidat u vzorku
    nis = round(nis_budget/nsim) + 1
    
    # loop over points 
    hplans = []
    for i in range(nsim): 
        
        sampled_plan_Rn_ma.mask = ma.nomask
        sampled_plan_Rn_ma[i] = ma.masked
        
        # find distance to the nearest sampling point (from all points)
        mindist = np.min(np.sum(np.square(sampled_plan_Rn_ma - wx.sampled_plan_Rn[i]), axis=1))**0.5
                                 
        # set the minimum distance as the standard deviation of IS densisty
        h_i = [stats.norm(wx.sampled_plan_Rn[i,j], 2*mindist ) for j in range(nvar)] #! dosadit  standard deviation pddle chutí
                                 
        # use IS sampling density with center equal to the current point
                                 
        # select nis points from IS density 
                                 
        h_plan_Rn = np.zeros((nis, nvar))
        for j in range(nvar):
            h_plan_Rn[:, j] = h_i[j].ppf(np.random.random(nis)) # realizace váhové funkce náhodné veličiny
    
        # Rozptyl corrected IS
        #weights_sim = np.prod([f_i[j].pdf(h_plan_Rn[:, j]) / h_i[j].pdf(h_plan_Rn[:, j]) for j in range(nvar)], axis=0) # [f1/h1, ..., fn/hn]
    
        # není ani nutný
        #weights_sim = wx.pdf(wx.Rn2R(h_plan_Rn)) * np.prod([1 / h_i[j].pdf(h_plan_Rn[:, j]) for j in range(nvar)], axis=0) 
       
        hplans.append(h_plan_Rn)       
       
    # ToDo
    # ale zatím to neřeším
    candidates_Rn = np.vstack(hplans)
    candidates_R = wx.Rn2R(candidates_Rn)
    candidates_Rd = wx.R2Rd(candidates_R) # candidates_R * wx.alpha
    
    candidates_P = wx.R2P(candidates_R)
    
    
    candidates_to_sample, candidates_mask, ivortodon, min_P_distances, overall_probabilities = entropy_estimation(wx.sampled_plan_P, wx.sampled_plan_Rd, candidates_P, candidates_Rd, wx.corners, wx.corner_values, wx.failsi, wx.PDF)
    
    
    return candidates_P, candidates_Rd, candidates_to_sample, min_P_distances, ivortodon, candidates_mask





def kechato_candidates(sampled_plan_P, sampled_plan_Rd, sorted_plan_P, f_i, corner_values, failsi, PDF, alpha, сэрегъёс, odhady):
    nsim, nvar = np.shape(sampled_plan_P)    
    
    # kechato here means "orthogonal net"    
    # kěčato znamená kostkovaný
    

    # шоръёсты шертем лыдъетлэсь кечато лыдъетлы пуктыськом
    # 1D arrays of midpoints between existing points in U-space
    kechato_list = []
    for i in range(nvar):
        sertem_vertices = []
        for j in range(len(sorted_plan_P[i]) - 1):
            sertem_vertices.append((sorted_plan_P[i][j+1] + sorted_plan_P[i][j]) / 2)
        kechato_list.append(sertem_vertices)
    
    # build an Nv-dimensional grid from the lists: the candidates
    kechato_grid_P = np.array( discrepancy_grid(kechato_list) )

    
    
    # pomocnej seznam pro výpočet objemů. Sestavá se z délek podel každé osy
    bydzjala_list = [] #list of lengths
    for i in range(nvar):
        sertem_list = [] #1D list
        for j in range(len(sorted_plan_P[i]) - 1):
            sertem_list.append(sorted_plan_P[i][j+1] - sorted_plan_P[i][j])
        bydzjala_list.append(sertem_list) #nv-dimensional list of 1D lists
    
    # Vobjemy. Sorry, chtěl jsem říct objemy.
    kechatlen_bydzjalaosty = np.prod(discrepancy_grid(bydzjala_list), axis=1)
    kechatlen_bydzjalaosty = np.array(kechatlen_bydzjalaosty)
    
    # počet grid bodů   (Ns+1)^Nv
    ketchatlen_lyd = len(kechatlen_bydzjalaosty)
    
    # grid points in the sampling space
    kechato_grid_R = np.empty([ketchatlen_lyd, nvar])
    for i in range(nvar):
        kechato_grid_R[:, i] = f_i[i].ppf(kechato_grid_P[:, i])
        
        
    # ToDo
    # ale zatím to neřeším
    kechato_grid_Rd = kechato_grid_R * alpha
    
    
    
    candidates_to_sample, candidates_mask, ivortodon, min_P_distances, overall_probabilities = entropy_estimation(sampled_plan_P, sampled_plan_Rd, kechato_grid_P, kechato_grid_Rd, сэрегъёс, corner_values, failsi, PDF)
    
    
    kechato_upper_bound = np.matmul(np.ceil(overall_probabilities), kechatlen_bydzjalaosty) 
    kechato_failure_rate = np.matmul(overall_probabilities, kechatlen_bydzjalaosty) 
    kechato_lower_bound = np.matmul(np.floor(overall_probabilities), kechatlen_bydzjalaosty) 
    print("kechato_failure_rate: ", kechato_failure_rate)

    
    odhady['kechato_upper_bound'][0].append(nsim)
    odhady['kechato_upper_bound'][1].append(kechato_upper_bound)
    odhady['kechato_failure_rate'][0].append(nsim)
    odhady['kechato_failure_rate'][1].append(kechato_failure_rate)
    odhady['kechato_lower_bound'][0].append(nsim)
    odhady['kechato_lower_bound'][1].append(kechato_lower_bound)    
    
    return kechato_grid_P, kechato_grid_Rd, candidates_to_sample, min_P_distances, ivortodon, candidates_mask






def entropy_estimation(sampled_plan_P, sampled_plan_Rd, kechato_grid_P, kechato_grid_Rd, сэрегъёс, corner_values, failsi, PDF):
    nsim, nvar = np.shape(sampled_plan_P)    
    nis = len(kechato_grid_P) # here means number of candidates
    
    min_P_distances = [] #potentials at grid points (candidates)
    
    dosah_lydjet = [] #list of visibility of simulation points from the viewpoint of each grid point
    
    quadrant_wise_reach = [] # kechato_grid size.... visibility in separate qudrants

    
    
    
    
    for i in range(nis): #in all grid points
        
        
        inode2points_P_matrix = sampled_plan_P - kechato_grid_P[i]
        
        node_quadrants = [] # size of 2**nvar
        
        
        
        for j in range(2**nvar):
            quadrant_points = []
            vyl_node_kusypjos = сэрегъёс[j] - kechato_grid_P[i]
            #quadrant_filter = (np.sign(inode2points_P_matrix) == np.sign(vyl_node_kusypjos)).all(axis=1)
            # je lepší z hlediska simulací na stejných souřadnicích
            quadrant_filter = np.logical_not((np.sign(inode2points_P_matrix) != np.sign(vyl_node_kusypjos)).any(axis=1))
            
            quadrant_selection = np.copy(inode2points_P_matrix[quadrant_filter])
            indexes = np.array(range(nsim))[quadrant_filter] # pomocnej seznam
            
            #np.argmin(np.sum(np.abs(quadrant_selection), axis=1))
            
            for _k in range(len(quadrant_selection)):
                k = np.argmin(np.sum(np.abs(quadrant_selection), axis=1))
                quadrant_points.append(indexes[k])
                #vuz_node_kusypjos = vyl_node_kusypjos
                #vyl_node_kusypjos = quadrant_selection[k] - kechato_grid_P[i]
                quadrant_filter = np.min(np.subtract(quadrant_selection, quadrant_selection[k]) * np.sign(vyl_node_kusypjos), axis=1) < 0
                quadrant_selection = np.copy(quadrant_selection[quadrant_filter])
                indexes = np.copy(indexes[quadrant_filter]) # pomocnej seznam
                if len(quadrant_selection) == 0:
                    break
                
            #simulation points that are visible from current grid point in each quadrant
            node_quadrants.append(quadrant_points)
        
        
        #simulation points that are vidible from each grid point in each quadrant
        quadrant_wise_reach.append(node_quadrants)
        
        dosah_lydjet.append([item for sublist in node_quadrants for item in sublist])


        
    
    
    # není nutný, přenejmenším zatím
    #==============================================================================
    # 
    #PDF_gridu = np.empty(ketchatlen_lyd)
    #for i in range(ketchatlen_lyd):
    #    PDF_gridu[i] = np.prod([f_i[j].pdf(kechato_grid_R[i][j]) for j in range(nvar)])
    # 
    # 
    # 
    #==============================================================================
    
    
    
    
    
    # vyhodnocení
    
    # entropy (calculated from estimated probability that failure will occur at a candidate point)
    ivortodon = [] 

    
    # pravděpodobnostní pole
    overall_probabilities = np.empty(nis)
    
    быгатонлыкъёс = np.empty([nis, 2]) # 2_point_Voronoi probabilities
    #heat_probabilities = np.empty([ketchatlen_lyd, 2])
    quadrant_probabilities = np.empty([nis, 2])
    
    
    
    candidates_to_sample = []
    candidates_mask = np.empty(nis, np.bool)
    
    # vyhodnocení v každém bodě
    for i in range(nis):    
        # will only consider candidate points that see both: failure and success
#==============================================================================
#         I_ve_got_joy = False
#         I_ve_got_sorrow = False
#==============================================================================
        #pdf_sum = 0 # nazev není úplně korektní. Spíše suma váh
        success_weight = 0
        failure_weight = 0
        
        # hledáme nejbližší body
        success_Rd_distance = np.inf
        failure_Rd_distance = np.inf
        
        
        # Netscape Navigator
#==============================================================================
#         boundary_navigator = False
#         for var in range(nvar):
#             if kechato_grid_P[i][var] < np.min(sampled_plan_P[:, var]):
#                 boundary_navigator = True
#                 break
#             elif kechato_grid_P[i][var] > np.max(sampled_plan_P[:, var]):
#                 boundary_navigator = True
#                 break
#==============================================================================
        
        
        
        min_P_prod_distance = 1
        
        min_Rd_distance_1 = np.inf
        min_Rd_distance_2 = np.inf
        

        # сэрегъёс - rohy
        # zpracování rohů лэсьтыны кулэ
        # zatím se předpokladá, že jsou v někonečnu s nulovou hustotou

        ## kvadrantové omezení
        # 
        visible_corner = False # kandidat vidí alespoň jeden někaký rozík
        
        quadrant_approved = False # chcete tu vzorek?
        failuring_quadrants = 0
        countable_quadrants = 2**nvar
        for j in range(2**(nvar-1)):
            quadrant_mixed = False 
            inert_corner = False 
            crossing_corner = False # zda je jeden z těchto dvou kvadrantů je prazdnej
            
            # první kvadrant
            if quadrant_wise_reach[i][j]:
                quadrant_1 = failsi[quadrant_wise_reach[i][j][0]]
                failure_quadrant = float(quadrant_1)
                for point in quadrant_wise_reach[i][j][1:]:
                    if failsi[point] != quadrant_1:
                        # davaj do svidanija!
                        quadrant_mixed = True
                        failure_quadrant = 0.5
                
            elif corner_values[j] == -1:
                inert_corner = True
                failure_quadrant = 0.0
                countable_quadrants -= 1
                visible_corner = True # nutný?
            else:
                crossing_corner = True
                visible_corner = True
                quadrant_1 = corner_values[j] != 1
#==============================================================================
#                 if quadrant_1:                    
#                     I_ve_got_sorrow = True
#                 else:
#                     I_ve_got_joy = True
#==============================================================================
                failure_quadrant = float(quadrant_1)
                # krychličku počítáme aj do rohů
#==============================================================================
#                 vyl_node_kusypjos = сэрегъёс[j] - kechato_grid_P[i]
#                 prod_distance_P = np.prod(np.abs(vyl_node_kusypjos))
#                 if prod_distance_P < min_P_prod_distance:
#                      min_P_prod_distance = prod_distance_P
#==============================================================================
            failuring_quadrants += failure_quadrant
            
            # protílehlý kvadrant
            if quadrant_wise_reach[i][-j-1]:
                quadrant_2 = failsi[quadrant_wise_reach[i][-j-1][0]]
                failure_quadrant = float(quadrant_2)
                for point in quadrant_wise_reach[i][-j-1][1:]:
                    if failsi[point] != quadrant_2:
                        # davaj do svidanija!
                        quadrant_mixed = True
                        failure_quadrant = 0.5
            elif corner_values[-j-1] == -1:
                inert_corner = True
                failure_quadrant = 0.0
                countable_quadrants -= 1
                visible_corner = True # nutný?
            else:
                crossing_corner = True
                visible_corner = True
                quadrant_2 = corner_values[-j-1] != 1
#==============================================================================
#                 if quadrant_2:                    
#                     I_ve_got_sorrow = True
#                 else:
#                     I_ve_got_joy = True
#==============================================================================
                
                failure_quadrant = float(quadrant_2)
                # krychličku počítáme aj do rohů
#==============================================================================
#                 vyl_node_kusypjos = сэрегъёс[-j-1] - kechato_grid_P[i]
#                 prod_distance_P = np.prod(np.abs(vyl_node_kusypjos))
#                 if prod_distance_P < min_P_prod_distance:
#                      min_P_prod_distance = prod_distance_P
#==============================================================================
            failuring_quadrants += failure_quadrant
                
            # teď kontroly
            # zda v kvadrantu naprotí roru se mění znamenko
            if not (inert_corner or quadrant_mixed or quadrant_1 == quadrant_2) and crossing_corner:
                quadrant_approved = True
                
        
        
        
        # procházíme simulacemi v dohlednu
        for j in dosah_lydjet[i]:
            
            
            
            # tento kus kódu spíš pro vzorkovaní
            #point_P_distance = np.sum(np.abs(sampled_plan_P[j] - kechato_grid_P[i]))
            prod_distance_P = np.prod(np.abs(sampled_plan_P[j] - kechato_grid_P[i]))
            if prod_distance_P < min_P_prod_distance:
                min_P_prod_distance = prod_distance_P
                
            
            # tento kus kódu spíš pro vyhodnocení
            point_Rd_distance = np.sum(np.abs(sampled_plan_Rd[j] - kechato_grid_Rd[i]))
            
            
            # two nearest points
            if point_Rd_distance < min_Rd_distance_1:
                min_Rd_distance_2 = min_Rd_distance_1
                min_Rd_distance_1 = point_Rd_distance
            elif point_Rd_distance < min_Rd_distance_2:
                min_Rd_distance_2 = point_Rd_distance
            
            
            point_weight = PDF[j] / point_Rd_distance
            #pdf_sum += point_weight
            if failsi[j] and point_Rd_distance < failure_Rd_distance:
                failure_weight = point_weight
                failure_Rd_distance = point_Rd_distance
                
            elif not failsi[j] and point_Rd_distance < success_Rd_distance:
                success_weight = point_weight
                success_Rd_distance = point_Rd_distance
                
                
#==============================================================================
#             if failsi[j]:
#                 I_ve_got_sorrow = True
#             else:
#                 I_ve_got_joy = True
#==============================================================================

                
                
        
        
        
        # počítame pravděpodobnosti v bodech gridu a entropii
        #        
        # podle Rd vzdáleností a pdf
        #if pdf_sum > 0:
        
        min_P_distances.append(min_P_prod_distance)
        
        fs_weight = failure_weight + success_weight
        быгатонлыкъёс[i] = [failure_weight/fs_weight, success_weight/fs_weight]        
        
        # countable_quadrants -> disregard mixed ones
        quadrant_probabilities[i] = [failuring_quadrants/countable_quadrants, 1 - failuring_quadrants/countable_quadrants]
        
        # kvadrantový a heat estimatory dohromady
#==============================================================================
#         if nsim == 1:
#             node_pf = quadrant_probabilities[i][0]
#         elif visible_corner:
#             node_pf = (X_mesh[i] + quadrant_probabilities[i][0]) / 2
#         else:
#             node_pf = X_mesh[i]
#==============================================================================
            
        # kvadrantový a 2_point_Voronoi estimatory dohromady
        if visible_corner: # if visible, then average of 2p voronoi and quadrant 
            node_pf = (быгатонлыкъёс[i][0] + quadrant_probabilities[i][0]) / 2
            overall_probabilities[i] = node_pf
        else: # inside will only use 2p Voronoi
            node_pf = быгатонлыкъёс[i][0]
            overall_probabilities[i] = node_pf
        
        #node_pf = Least_square_probabilities[i][0]

        #  !!!! ENTROPY !!!
        if node_pf > 0 and node_pf < 1:
            кечатлэн_ивортодон = -node_pf*np.log(node_pf) - (1-node_pf)*np.log(1-node_pf)
        else:
            кечатлэн_ивортодон = 0
            
        ivortodon.append(кечатлэн_ивортодон)
        
        fs_Rd_distance = success_Rd_distance + failure_Rd_distance 
        

        if min_Rd_distance_2 != np.inf:    
            point_distance_approved = np.divide(min_Rd_distance_1 + min_Rd_distance_2, fs_Rd_distance) > 0.99
        else:
            point_distance_approved = False
        #if I_ve_got_joy and I_ve_got_sorrow and ((min_Rd_distance_1 + min_Rd_distance_2) / fs_Rd_distance > 0.99 or corner_explorer):
        if visible_corner and quadrant_approved  or  point_distance_approved: # and not visible_corner:
        #if I_ve_got_joy and I_ve_got_sorrow:
            candidates_to_sample.append(i)
            candidates_mask[i] = True
        else:
            candidates_mask[i] = False
            
    return candidates_to_sample, candidates_mask, ivortodon, min_P_distances, overall_probabilities
            
















w_sim = int(5e5) # zhruba zadava jemnost gridu
def w_grid(w_sim, nvar):
    
    n_grid = round(w_sim ** (1/nvar))
    #print("jemnost gridu  n_grid = " + str(n_grid))
    w_sim = n_grid**nvar
    #print("počet váhových bodů  w_sim = " + str(w_sim))

    #generuje rovnomerny vahovy grid ve 0-1 prostoru
    weight_plan = np.empty([w_sim, nvar])
    for i in range(w_sim):
        for j in range(nvar):
            if j==0: 
                quotient, modulo = divmod(i, n_grid)
                weight_plan[i, j] =  (modulo + 0.5) / n_grid
            else: 
                quotient, modulo = divmod(i, n_grid ** (j+1))
                quotient, modulo = divmod(modulo, n_grid ** j)
            
                weight_plan[i, j] = (quotient + 0.5) / n_grid 
    return weight_plan


def n_size_grid(n_grid, nvar):
    
    w_sim = n_grid**nvar
    #print("počet váhových bodů  w_sim = " + str(w_sim))

    #generuje rovnomerny vahovy grid ve 0-1 prostoru
    weight_plan = np.empty([w_sim, nvar])
    for i in range(w_sim):
        for j in range(nvar):
            if j==0: 
                quotient, modulo = divmod(i, n_grid)
                weight_plan[i, j] =  (modulo + 0.5) / n_grid
            else: 
                quotient, modulo = divmod(i, n_grid ** (j+1))
                quotient, modulo = divmod(modulo, n_grid ** j)
            
                weight_plan[i, j] = (quotient + 0.5) / n_grid 
    return weight_plan
    
    
    
def discrepancy_grid(sorted_plan):
    # data frame 1
    d0 = {'ID':1,
      -1:pd.Series(sorted_plan[0])}
    dfr = pd.DataFrame(d0)
    
    for i in range(len(sorted_plan)-1):
        
        # next data frame 
        d = {'ID':1, i:pd.Series(sorted_plan[i+1])}
        df = pd.DataFrame(d)
        
        
        # outer join in python pandas
        dfr = pd.merge(dfr, df, how='outer')
        
    dfr.drop('ID', axis=1, inplace=True)
    return dfr



# kechato_discrepancy(np.random.random((10, 2)))
def kechato_discrepancy(sampled_plan_P):
    # kechato here means "orthogonal net"    
    # kechato znamená ortogonální síť
    
    nsim, nvar = sampled_plan_P.shape
    
    sorted_plan_P = [i for i in range(nvar)] # just create list
    for i in range(nvar):
        sorted_plan_P[i] = np.concatenate(([0], np.sort(sampled_plan_P[:, i]), [1]))
        
    


        
    kechato_list = []
    for i in range(nvar):
        sertem_vertices = [] # i.e. sorted
        for j in range(len(sorted_plan_P[i]) - 1):
            sertem_vertices.append((sorted_plan_P[i][j+1] + sorted_plan_P[i][j]) / 2) # i.e. sorted
        kechato_list.append(sertem_vertices)
    
    
    kechato_grid_P = np.array( discrepancy_grid(kechato_list) )
    
    
    
    
    bydzjala_list = []
    for i in range(nvar):
        sertem_list = []
        for j in range(len(sorted_plan_P[i]) - 1):
            sertem_list.append(sorted_plan_P[i][j+1] - sorted_plan_P[i][j])
        bydzjala_list.append(sertem_list)
    
    kechatlen_bydzjalaosty = np.prod( discrepancy_grid(bydzjala_list), axis=1 )
    
    
    
    ketchatlen_lyd = len(kechatlen_bydzjalaosty)
    
    
    # nepotřebuji pro "diskrepanciju"
#==============================================================================
#     kechato_grid_R = np.empty([ketchatlen_lyd, nvar])
#     for i in range(nvar):
#         kechato_grid_R[:, i] = f_i[i].ppf(kechato_grid_P[:, i])
#         
#     # ToDo
#     # ale zatím to neřeším
#     kechato_grid_Rd = kechato_grid_R 
#==============================================================================
    
        
    
    dosah_lydjet = []
    
    for i in range(ketchatlen_lyd):
        dosah_nodu = []
        for j in range(len(sampled_plan_P)):
            node_vatsano = True
            for k in dosah_nodu:
                vuz_node_kusypjos = sampled_plan_P[k] - kechato_grid_P[i]
                vyl_node_kusypjos = sampled_plan_P[j] - kechato_grid_P[i]
    
                if not (np.sign(vuz_node_kusypjos) == np.sign(vyl_node_kusypjos)).any():
                    next
                
                if np.max(np.subtract(vuz_node_kusypjos, vyl_node_kusypjos) * np.sign(vuz_node_kusypjos)) < 0:
                    node_vatsano = False
                    break
            if node_vatsano:
                dosah_nodu.append(j)
                
        dosah_nodu_2 = []
        for j in dosah_nodu:
            node_vatsano = True
            for k in dosah_nodu:
                if j==k:
                    next
                
                vuz_node_kusypjos = sampled_plan_P[k] - kechato_grid_P[i]
                vyl_node_kusypjos = sampled_plan_P[j] - kechato_grid_P[i]
    
                if not (np.sign(vuz_node_kusypjos) == np.sign(vyl_node_kusypjos)).any():
                    next
                
                if np.max(np.subtract(vuz_node_kusypjos, vyl_node_kusypjos) * np.sign(vuz_node_kusypjos)) < 0:
                    node_vatsano = False
                    break
            if node_vatsano:
                dosah_nodu_2.append(j)
            
        
        dosah_lydjet.append(dosah_nodu_2)
    
    
    
    # nepotřebuji pro "diskrepanciju"
#==============================================================================
#     PDF = np.empty(len(sampled_plan_P))
#     for i in range(len(PDF)):
#         PDF[i] = np.prod([f_i[j].pdf(f_i[j].ppf(sampled_plan_P[i][j])) for j in range(nvar)])
#     
#     
#     PDF_gridu = np.empty(ketchatlen_lyd)
#     for i in range(ketchatlen_lyd):
#         PDF_gridu[i] = np.prod([f_i[j].pdf(kechato_grid_R[i][j]) for j in range(nvar)])
#==============================================================================
    
    # nepotřebuji pro "diskrepanciju"
#==============================================================================
#     ivortodon = [] # informace
#     быгатонлыкъёс = [] # pravděpodobnosti
#     
#     for i in range(ketchatlen_lyd):    
#         weight_sum = 0
#         success_weight = 0
#         failure_weight = 0
#         for j in dosah_lydjet[i]:
#             point_weight = PDF[j] / np.sum(np.abs(sampled_plan_P[j] - kechato_grid_P[i]))
#             weight_sum += point_weight
#             if failsi[j]:
#                 failure_weight += point_weight
#             else:
#                 success_weight += point_weight
#                 
#                 
#         # zpracování rohů лэсьтыны кулэ
#                 
#         быгатонлыкъёс.append([failure_weight/weight_sum, success_weight/weight_sum])
#         кечатлэн_ивортодон = быгатонлыкъёс[i][0]*np.log(быгатонлыкъёс[i][0]) + быгатонлыкъёс[i][1]*np.log(быгатонлыкъёс[i][1])
#         if np.isnan(кечатлэн_ивортодон):
#             ivortodon.append(0)
#         else:
#             ivortodon.append(кечатлэн_ивортодон)
#==============================================================================
    
    
    
    # nepotřebuji pro "diskrepanciju"
#==============================================================================
#     PDF_сэрегъёслэн = np.empty(len(corner_values))
#     for i in range(len(PDF_сэрегъёслэн)):
#         PDF_сэрегъёслэн[i] = np.prod([f_i[j].pdf(f_i[j].ppf(сэрегъёс[i][j])) for j in range(nvar)])
#==============================================================================
    
    
    
    
    matice_zasahu = np.zeros([ketchatlen_lyd, ketchatlen_lyd], np.int8)
    np.fill_diagonal(matice_zasahu, 1)
    for i in range(ketchatlen_lyd):
        for j in range(i+1, ketchatlen_lyd):
            matice_zasahu[i,j] = 1
            for k in dosah_lydjet[i]:
                vuz_node_kusypjos = sampled_plan_P[k] - kechato_grid_P[i]
                vyl_node_kusypjos = kechato_grid_P[j] - kechato_grid_P[i]
    
                if not (np.sign(vuz_node_kusypjos) == np.sign(vyl_node_kusypjos)).any():
                    next
                
                if np.max(np.subtract(vuz_node_kusypjos, vyl_node_kusypjos) * np.sign(vuz_node_kusypjos)) < 0:
                    matice_zasahu[i,j] = 0
                    break
    
    matice_zasahu = symmetrize(matice_zasahu)
    
    kechatlen_adjzonezy = np.matmul(matice_zasahu, kechatlen_bydzjalaosty) # viditelnosti
    
    return np.sum(kechatlen_bydzjalaosty * kechatlen_adjzonezy)
    


def symmetrize(a):
    return a + a.T - np.diag(a.diagonal())


Mode Type Size Ref File
100644 blob 28117 0907e38499eeca10471c7d104d4b4db30b8b7084 IS_stat.py
100644 blob 6 0916b75b752887809bac2330f3de246c42c245cd __init__.py
100644 blob 72 458b7e2ca46acd9ec0d2caf3cc4d72e515bb73dc __main__.py
100644 blob 73368 3d245b8568158ac63c80fa0847631776a140db0f blackbox.py
100644 blob 11243 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d candybox.py
100644 blob 29927 066a2d10ea1d21daa6feb79fa067e87941299ec4 convex_hull.py
100644 blob 102798 059ae717e71c651975673420cd8230fbef171e5e dicebox.py
100644 blob 36930 a775d1114bc205bbd1da0a10879297283cca0d4c estimation.py
100644 blob 34394 3f0ab9294a9352a071de18553aa687c2a9e6917a f_models.py
100644 blob 31142 3e14ac49d16a724bb43ab266e8bea23114e47958 g_models.py
100644 blob 20908 457329fe567f1c0a9950c21c7c494cccf38193cc ghull.py
100644 blob 2718 5d721d117448dbb96c554ea8f0e4651ffe9ac457 gp_plot.py
100644 blob 29393 96162a5d181b8307507ba2f44bafe984aa939163 lukiskon.py
100644 blob 2004 6ea8dc8f50a656c48f786d5a00bd6398276c9741 misc.py
040000 tree - 0841dfcc64d260020de15b70c35690f0b5fe1816 mplot
100644 blob 1462 437b0d372b6544c74fea0d2c480bb9fd218e1854 plot.py
100644 blob 2807 1feb1d43e90e027f35bbd0a6730ab18501cef63a plotly_plot.py
040000 tree - 92aa143106644f120bdc42b9062db3513c499e60 qt_gui
100644 blob 8566 5c8f8cc2a34798a0f25cb9bf50b5da8e86becf64 reader.py
100644 blob 4284 a0e0b4e593204ff6254f23a67652804db07800a6 samplebox.py
100644 blob 6558 df0e88ea13c95cd1463a8ba1391e27766b95c3a5 sball.py
100644 blob 6739 0b6f1878277910356c460674c04d35abd80acf13 schemes.py
100644 blob 76 11b2fde4aa744a1bc9fa1b419bdfd29a25c4d3e8 shapeshare.py
100644 blob 54074 ba978868adb487385157afa5b3420f9ad90e4f46 simplex.py
100644 blob 13090 2b9681eed730ecfadc6c61b234d2fb19db95d87d spring.py
100644 blob 10940 6965eabdb5599bb22773e7fef1178f9b2bb51efe stm_df.py
040000 tree - 2e8d08eec735088322a3ea5f667ff338db7808ca testcases
100644 blob 2465 d829bff1dd721bdb8bbbed9a53db73efac471dac welford.py
100644 blob 20204 1a281748b81481f8d51c3793bcf46b0034082152 whitebox.py
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"

Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet

Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet

Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet

You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main