/misc.py (6ea8dc8f50a656c48f786d5a00bd6398276c9741) (2004 bytes) (mode 100644) (type blob)
#!/usr/bin/env python
# coding: utf-8
import numpy as np
from . import sball # for Isocurves
def isolevels_2d(pdf, weighting_pdf_const, r_levels, from_top=None):
"""
weighting_pdf_const = 1 / (xmax - xmin) / (ymax - ymin)
"""
s_ball = sball.Sball(2) # nvar=2
p_levels = []
for r in r_levels:
p_levels.append(1 - s_ball.get_pf(r))
return isolevels(pdf, weighting_pdf_const, p_levels, from_top)
def isolevels(pdf, weighting_pdf_const, p_levels, from_top=None):
"""
weighting_pdf_const = 1 / (xmax - xmin) / (ymax - ymin)
"""
#č třeba P prostor doopravdy zlobí, takže zkusím nějak tak
if from_top is None:
weights = pdf / weighting_pdf_const
p_all = np.sum(weights) / len(pdf)
#č prečo víme, že celková pravděpodobnost může bejt nekoněčně velká
if p_all <= 1:
from_top = True
else:
from_top = False
max_pdf = np.max(pdf)
pdf_levels = []
if from_top:
# descending
sorted_pdf = np.flip(np.sort(pdf))
p_cumsum = np.cumsum(sorted_pdf) / weighting_pdf_const / len(pdf)
for p in p_levels:
# little bit tricky, didn't find numpy method for this
mask = p_cumsum <= p
level_down_bound = np.max(sorted_pdf[~mask], initial=0)
level_up_bound = np.min(sorted_pdf[mask], initial=max_pdf)
pdf_levels.append((level_down_bound + level_up_bound) / 2)
else: # from bottom
sorted_pdf = np.sort(pdf)
p_cumsum = np.cumsum(sorted_pdf) / weighting_pdf_const / len(pdf)
for p in p_levels:
# little bit tricky, didn't find numpy method for this
mask = p_cumsum <= 1-p
level_down_bound = np.max(sorted_pdf[mask], initial=0)
level_up_bound = np.min(sorted_pdf[~mask], initial=max_pdf)
pdf_levels.append((level_down_bound + level_up_bound) / 2)
return pdf_levels
Mode |
Type |
Size |
Ref |
File |
100644 |
blob |
28117 |
0907e38499eeca10471c7d104d4b4db30b8b7084 |
IS_stat.py |
100644 |
blob |
6 |
0916b75b752887809bac2330f3de246c42c245cd |
__init__.py |
100644 |
blob |
72 |
458b7e2ca46acd9ec0d2caf3cc4d72e515bb73dc |
__main__.py |
100644 |
blob |
73368 |
3d245b8568158ac63c80fa0847631776a140db0f |
blackbox.py |
100644 |
blob |
11243 |
10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d |
candybox.py |
100644 |
blob |
29927 |
066a2d10ea1d21daa6feb79fa067e87941299ec4 |
convex_hull.py |
100644 |
blob |
102798 |
059ae717e71c651975673420cd8230fbef171e5e |
dicebox.py |
100644 |
blob |
36930 |
a775d1114bc205bbd1da0a10879297283cca0d4c |
estimation.py |
100644 |
blob |
34394 |
3f0ab9294a9352a071de18553aa687c2a9e6917a |
f_models.py |
100644 |
blob |
31142 |
3e14ac49d16a724bb43ab266e8bea23114e47958 |
g_models.py |
100644 |
blob |
20908 |
457329fe567f1c0a9950c21c7c494cccf38193cc |
ghull.py |
100644 |
blob |
2718 |
5d721d117448dbb96c554ea8f0e4651ffe9ac457 |
gp_plot.py |
100644 |
blob |
29393 |
96162a5d181b8307507ba2f44bafe984aa939163 |
lukiskon.py |
100644 |
blob |
2004 |
6ea8dc8f50a656c48f786d5a00bd6398276c9741 |
misc.py |
040000 |
tree |
- |
a1a9fbb73de4fcb5053053cf3b61948ee1b94e36 |
mplot |
100644 |
blob |
1462 |
437b0d372b6544c74fea0d2c480bb9fd218e1854 |
plot.py |
100644 |
blob |
2807 |
1feb1d43e90e027f35bbd0a6730ab18501cef63a |
plotly_plot.py |
040000 |
tree |
- |
92aa143106644f120bdc42b9062db3513c499e60 |
qt_gui |
100644 |
blob |
8566 |
5c8f8cc2a34798a0f25cb9bf50b5da8e86becf64 |
reader.py |
100644 |
blob |
4284 |
a0e0b4e593204ff6254f23a67652804db07800a6 |
samplebox.py |
100644 |
blob |
6558 |
df0e88ea13c95cd1463a8ba1391e27766b95c3a5 |
sball.py |
100644 |
blob |
6579 |
23e6a1b7a579518da367f6f9f4a2a99250f700de |
schemes.py |
100644 |
blob |
76 |
11b2fde4aa744a1bc9fa1b419bdfd29a25c4d3e8 |
shapeshare.py |
100644 |
blob |
53957 |
a35f39da15b6dcc7877d7d6c6f1c45f2f494eefe |
simplex.py |
100644 |
blob |
13090 |
2b9681eed730ecfadc6c61b234d2fb19db95d87d |
spring.py |
100644 |
blob |
10940 |
6965eabdb5599bb22773e7fef1178f9b2bb51efe |
stm_df.py |
040000 |
tree |
- |
88c61e6269c371555c5fbbfea9dde0dcccb4f084 |
testcases |
100644 |
blob |
2465 |
d829bff1dd721bdb8bbbed9a53db73efac471dac |
welford.py |
100644 |
blob |
19001 |
1f864d2db2dce5f15d790e9294f622907df82d63 |
whitebox.py |
Hints:
Before first commit, do not forget to setup your git environment:
git config --global user.name "your_name_here"
git config --global user.email "your@email_here"
Clone this repository using HTTP(S):
git clone https://rocketgit.com/user/iam-git/WellMet
Clone this repository using ssh (do not forget to upload a key first):
git clone ssh://rocketgit@ssh.rocketgit.com/user/iam-git/WellMet
Clone this repository using git:
git clone git://git.rocketgit.com/user/iam-git/WellMet
You are allowed to anonymously push to this repository.
This means that your pushed commits will automatically be transformed into a
merge request:
... clone the repository ...
... make some changes and some commits ...
git push origin main