#!/usr/bin/env python # coding: utf-8 import plotly.graph_objects as go def tri_estimation_graph(bx, tri_estimation_name='TRI_current_estimations', filename=''): if not filename: filename = 'store/%s_%s_%s_graph'%(bx.gm_signature, repr(bx), tri_estimation_name) data = bx.guessbox.estimations[tri_estimation_name] x=data[0] # it can be effectively done with pandas p_f = [] p_mix = [] p_outside = [] p_success = [] for estimation in data[1]: # -1 = 'out', 0=success, 1=failure, 2=mix p_f.append(estimation[1]) p_mix.append(estimation[2]) p_outside.append(estimation[-1]) p_success.append(estimation[0]) # uplně hahoru - success # outside # mix # uplně dolu - failure fig = go.Figure() fig.add_trace(go.Scatter( x=x, y=p_f, mode='lines', line=dict(width=0.5, color='red'), #rgb(184, 247, 212) name="Failure", stackgroup='one', groupnorm='fraction' # sets the normalization for the sum of the stackgroup )) fig.add_trace(go.Scatter( x=x, y=p_mix, mode='lines', line=dict(width=0.5, color='orange'), name="Mixed", stackgroup='one' )) fig.add_trace(go.Scatter( x=x, y=p_outside, mode='lines', line=dict(width=0.5, color='white'), name="Outside", stackgroup='one' )) fig.add_trace(go.Scatter( x=x, y=p_success, mode='lines', line=dict(width=0.5, color='green'), name="Success", stackgroup='one' )) try: fig.add_trace(go.Scatter(x=(min(x),max(x)), y=(bx.pf_exact,bx.pf_exact), mode='lines', name=bx.pf_exact_method, line=dict(color='blue'))) except AttributeError: pass fig.update_layout( showlegend=True, #xaxis_type='category', yaxis=dict( type='linear', range=[0, 1], #ticksuffix='%' )) # zatím nechcu nikomu nic zobrazovat #fig.show() fig.write_html(filename + ".html") # kdyby někdo chtěl statické obrázky # musí mať psutil nainštalovany try: fig.write_image(filename + ".png") except: pass # vratíme figuru, # uživatel by mohl s ní eště něčo udělat return fig # 3D plot requires WebGL support # which is not currently availiable under Haiku. # #import plotly.graph_objects as go #import numpy as np # ## Helix equation #t = np.linspace(0, 10, 50) #x, y, z = np.cos(t), np.sin(t), t # #fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z, # mode='markers')]) #fig.show() #
Mode | Type | Size | Ref | File |
---|---|---|---|---|
100644 | blob | 28117 | 0907e38499eeca10471c7d104d4b4db30b8b7084 | IS_stat.py |
100644 | blob | 6 | 0916b75b752887809bac2330f3de246c42c245cd | __init__.py |
100644 | blob | 72 | 458b7e2ca46acd9ec0d2caf3cc4d72e515bb73dc | __main__.py |
100644 | blob | 73368 | 3d245b8568158ac63c80fa0847631776a140db0f | blackbox.py |
100644 | blob | 11243 | 10c424c2ce5e8cdd0da97a5aba74c54d1ca71e0d | candybox.py |
100644 | blob | 29927 | 066a2d10ea1d21daa6feb79fa067e87941299ec4 | convex_hull.py |
100644 | blob | 102798 | 059ae717e71c651975673420cd8230fbef171e5e | dicebox.py |
100644 | blob | 36930 | a775d1114bc205bbd1da0a10879297283cca0d4c | estimation.py |
100644 | blob | 34394 | 3f0ab9294a9352a071de18553aa687c2a9e6917a | f_models.py |
100644 | blob | 31142 | 3e14ac49d16a724bb43ab266e8bea23114e47958 | g_models.py |
100644 | blob | 20908 | 457329fe567f1c0a9950c21c7c494cccf38193cc | ghull.py |
100644 | blob | 2718 | 5d721d117448dbb96c554ea8f0e4651ffe9ac457 | gp_plot.py |
100644 | blob | 29393 | 96162a5d181b8307507ba2f44bafe984aa939163 | lukiskon.py |
100644 | blob | 2004 | 6ea8dc8f50a656c48f786d5a00bd6398276c9741 | misc.py |
040000 | tree | - | a1a9fbb73de4fcb5053053cf3b61948ee1b94e36 | mplot |
100644 | blob | 1462 | 437b0d372b6544c74fea0d2c480bb9fd218e1854 | plot.py |
100644 | blob | 2807 | 1feb1d43e90e027f35bbd0a6730ab18501cef63a | plotly_plot.py |
040000 | tree | - | 92aa143106644f120bdc42b9062db3513c499e60 | qt_gui |
100644 | blob | 8566 | 5c8f8cc2a34798a0f25cb9bf50b5da8e86becf64 | reader.py |
100644 | blob | 4284 | a0e0b4e593204ff6254f23a67652804db07800a6 | samplebox.py |
100644 | blob | 6558 | df0e88ea13c95cd1463a8ba1391e27766b95c3a5 | sball.py |
100644 | blob | 6579 | 23e6a1b7a579518da367f6f9f4a2a99250f700de | schemes.py |
100644 | blob | 76 | 11b2fde4aa744a1bc9fa1b419bdfd29a25c4d3e8 | shapeshare.py |
100644 | blob | 53957 | a35f39da15b6dcc7877d7d6c6f1c45f2f494eefe | simplex.py |
100644 | blob | 13090 | 2b9681eed730ecfadc6c61b234d2fb19db95d87d | spring.py |
100644 | blob | 10940 | 6965eabdb5599bb22773e7fef1178f9b2bb51efe | stm_df.py |
040000 | tree | - | 88c61e6269c371555c5fbbfea9dde0dcccb4f084 | testcases |
100644 | blob | 2465 | d829bff1dd721bdb8bbbed9a53db73efac471dac | welford.py |
100644 | blob | 19001 | 1f864d2db2dce5f15d790e9294f622907df82d63 | whitebox.py |